Author
Listed:
- Shuangchao Li
(College of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)
- Peichao Li
(College of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)
- Runzhou Yu
(College of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)
Abstract
Lithium-ion batteries (LIBs), crucial in modern advanced energy storage systems, inherently experience several side reactions during operation, with the formation of a solid electrolyte interface (SEI) and lithium plating being the most significant. These side reactions, which deplete lithium ions and lead to the clogging of negative electrode pores, considerably impair the battery’s cycle life and overall performance. This study introduces a numerical model for the battery aging process, grounded in existing research on SEI formation and its temperature-dependent aging kinetics. The model aims to elucidate how variations in the porosity of the negative electrode impact the battery’s cycle life. The study initially focuses on analyzing the principal mechanisms behind pore clogging in LIBs’ negative electrodes following extensive charge/discharge cycles. Subsequently, the study conducts numerical simulations to thoroughly investigate the effects of various non-uniform porosity structures in the negative electrode, encompassing both linear and gradient configurations, on the battery’s cycle life. Additionally, the investigation conducts a comparative analysis to determine how different gradients in porosity structures influence pore clogging. It also delves into a detailed exploration of heat generation associated with the linear porosity structure of the negative electrode. The results indicate that the accumulation of the SEI layer significantly reduces porosity. This reduction, in turn, affects the conductivity and alters the current density during the SEI reaction. Notably, the linear porosity structure exhibits a significant advantage over traditional structures, especially in terms of reducing pore clogging and minimizing irreversible heat generation. In summary, this study presents a multi-physics and detailed numerical model to evaluate the impact of variations in negative electrode porosity on the cycle life of LIBs. Furthermore, it provides essential theoretical support for battery design and performance optimization, particularly in the determination of pore structures and material selection.
Suggested Citation
Shuangchao Li & Peichao Li & Runzhou Yu, 2025.
"Numerical Investigation of the Impact of Variation of Negative Electrode Porosity upon the Cycle Life of Lithium-Ion Batteries,"
Energies, MDPI, vol. 18(11), pages 1-22, May.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:11:p:2883-:d:1668854
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2883-:d:1668854. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.