IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2753-d1664558.html
   My bibliography  Save this article

Stand-Alone Operation of Multi-Phase Doubly-Fed Induction Generator Supplied by SiC-Based Current Source Converter

Author

Listed:
  • Łukasz Sienkiewicz

    (Faculty of Electrical and Control Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland
    These authors contributed equally to this work.)

  • Filip Wilczyński

    (Faculty of Electrical and Control Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland
    These authors contributed equally to this work.)

  • Szymon Racewicz

    (Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

Abstract

This paper investigates the performance of a five-phase silicon carbide (SiC)-based current-source converter (CSC) integrated with a Doubly Fed Induction Generator (DFIG) for wind energy applications. The study explores both healthy and faulty operation, focusing on system behavior under transient conditions and various load scenarios in stand-alone mode. A novel five-phase space vector PWM strategy in dual coordinate planes is introduced, which enables stable control during normal and open-phase fault conditions. Experimental results demonstrate improved stator voltage and current quality, particularly in terms of reduced Total Harmonic Distortion (THD), compared to traditional voltage-source converter-based systems. Furthermore, the system maintains operational stability under a single-phase open fault, despite increased oscillations in stator quantities. The results highlight the potential of five-phase CSC-DFIG systems as a robust and efficient alternative for wind power plants, particularly in configurations involving long cable connections and requiring low generator losses. Future work will focus on enhancing fault-tolerant capabilities and expanding control strategies for improved performance under different operating conditions.

Suggested Citation

  • Łukasz Sienkiewicz & Filip Wilczyński & Szymon Racewicz, 2025. "Stand-Alone Operation of Multi-Phase Doubly-Fed Induction Generator Supplied by SiC-Based Current Source Converter," Energies, MDPI, vol. 18(11), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2753-:d:1664558
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krzysztof Blecharz & Marcin Morawiec, 2019. "Nonlinear Control of a Doubly Fed Generator Supplied by a Current Source Inverter," Energies, MDPI, vol. 12(12), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Michna & Filip Kutt & Łukasz Sienkiewicz & Roland Ryndzionek & Grzegorz Kostro & Dariusz Karkosiński & Bartłomiej Grochowski, 2020. "Mechanical-Level Hardware-In-The-Loop and Simulation in Validation Testing of Prototype Tower Crane Drives," Energies, MDPI, vol. 13(21), pages 1-25, November.
    2. Daniel Wachowiak, 2021. "A Universal Gains Selection Method for Speed Observers of Induction Machine," Energies, MDPI, vol. 14(20), pages 1-19, October.
    3. Paweł Kroplewski & Marcin Morawiec & Andrzej Jąderko & Charles Odeh, 2021. "Simulation Studies of Control Systems for Doubly Fed Induction Generator Supplied by the Current Source Converter," Energies, MDPI, vol. 14(5), pages 1-16, March.
    4. Daniel Wachowiak, 2020. "Genetic Algorithm Approach for Gains Selection of Induction Machine Extended Speed Observer," Energies, MDPI, vol. 13(18), pages 1-24, September.
    5. Wang Hu & Yunxiang Xie & Zhiping Wang & Zhi Zhang, 2020. "A Novel Three-Phase Current Source Rectifier Based on an Asymmetrical Structure to Reduce Stress on Semiconductor Devices," Energies, MDPI, vol. 13(13), pages 1-16, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2753-:d:1664558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.