Author
Listed:
- Wentao Zhang
(School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)
- Sizhe Cheng
(School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)
- Pengcheng Zhu
(School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)
- Yiwei Liu
(School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China)
- Jiming Zou
(School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)
Abstract
High-frequency injection (HFI) is widely adopted for the sensorless control of permanent magnet synchronous motors (PMSMs) at low speeds. However, conventional HFI strategies relying on fixed-frequency carrier modulation and square-wave injection concentrate current harmonic energy within narrow spectral bands, thereby inducing pronounced high-frequency motor vibrations and noise. To mitigate this issue, this paper proposes a noise suppression strategy based on synchronized periodic frequency modulation (PFM) of both the carrier and high-frequency square-wave signals. By innovatively synchronizing the periodic modulation of the triangular carrier in space vector pulse width modulation (SVPWM) with the injected high-frequency square wave, harmonic energy dispersion and noise reduction are achieved, substantially lowering peak acoustic emissions. First, the harmonic characteristics of the voltage-source inverter output under symmetric triangular carrier SVPWM are analyzed within a sawtooth-wave PFM framework. Concurrently, a harmonic current model is developed for the high-frequency square-wave injection method, enabling the precise derivation of harmonic components. A frequency-synchronized modulation strategy between the carrier and injection signals is proposed, with a rigorous analysis of its harmonic suppression mechanism. The rotor position is then estimated via high-frequency signal extraction and a normalized phase-locked loop (PLL). Comparative simulations and experiments confirm significant noise peak attenuation compared to conventional methods, while position estimation accuracy remains unaffected. This work provides both theoretical and practical advancements for noise-sensitive sensorless motor control applications.
Suggested Citation
Wentao Zhang & Sizhe Cheng & Pengcheng Zhu & Yiwei Liu & Jiming Zou, 2025.
"Synchronized Carrier-Wave and High-Frequency Square-Wave Periodic Modulation Strategy for Acoustic Noise Reduction in Sensorless PMSM Drives,"
Energies, MDPI, vol. 18(11), pages 1-19, May.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:11:p:2729-:d:1663546
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2729-:d:1663546. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.