IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2618-d1658986.html
   My bibliography  Save this article

A Comparative Analysis of Two Urban Building Energy Modelling Tools via the Case Study of an Italian Neighbourhood

Author

Listed:
  • Chiara Nardelli

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

  • Riccardo Colombo

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

  • Alessia Banfi

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

  • Martina Ferrando

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

  • Xing Shi

    (College of Architecture and Urban Planning, Tongji University, No. 1239 Si Ping Road, Shanghai 200092, China)

  • Francesco Causone

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy)

Abstract

Urban Building Energy Modelling (UBEM) represents a comprehensive approach to investigate the intricate interplay of the various factors impacting energy use of groups of buildings, offering invaluable insights for urban planners, architects, building engineers, and policymakers. Nonetheless, available UBEM tools are still “research tools” and lack a unified standard addressing input, output, nomenclature, and calculation approaches. In this context, this study aims to conduct a comprehensive comparative analysis of two of the most used UBEM tools: Integrated Computational Design (iCD), the commercial tool provided by the Integrated Environmental Solutions (IES) company, and Urban Modelling Interface (umi), developed by the Massachusetts Institute of Technology (MIT). The comparative analysis includes each step of the UBEM workflow: the creation of the model, the assignment of input data, energy simulation, and visualisation and exportation of results. The tools are tested through the simulation of a case study to provide insights on the rationale and informed use of the tools, highlighting the risks associated with use by modellers with different levels of expertise. Moreover, this study provides tool developers and the scientific community with suggestions for major areas of improvement and standardisation in the field of UBEM, since substantial differences are still reported with respect to output, input, nomenclature, and calculation approaches.

Suggested Citation

  • Chiara Nardelli & Riccardo Colombo & Alessia Banfi & Martina Ferrando & Xing Shi & Francesco Causone, 2025. "A Comparative Analysis of Two Urban Building Energy Modelling Tools via the Case Study of an Italian Neighbourhood," Energies, MDPI, vol. 18(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2618-:d:1658986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2618/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2618/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cerezo Davila, Carlos & Reinhart, Christoph F. & Bemis, Jamie L., 2016. "Modeling Boston: A workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets," Energy, Elsevier, vol. 117(P1), pages 237-250.
    2. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    3. Ang, Yu Qian & Berzolla, Zachary Michael & Reinhart, Christoph F., 2020. "From concept to application: A review of use cases in urban building energy modeling," Applied Energy, Elsevier, vol. 279(C).
    4. Francesco Causone & Rossano Scoccia & Martina Pelle & Paola Colombo & Mario Motta & Sibilla Ferroni, 2021. "Neighborhood Energy Modeling and Monitoring: A Case Study," Energies, MDPI, vol. 14(12), pages 1-19, June.
    5. Dall’O’, Giuliano & Sarto, Luca & Sanna, Nicola & Tonetti, Valeria & Ventura, Martina, 2015. "On the use of an energy certification database to create indicators for energy planning purposes: Application in northern Italy," Energy Policy, Elsevier, vol. 85(C), pages 207-217.
    6. Anita Tatti & Sibilla Ferroni & Martina Ferrando & Mario Motta & Francesco Causone, 2023. "The Emerging Trends of Renewable Energy Communities’ Development in Italy," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niall Buckley & Gerald Mills & Samuel Letellier-Duchesne & Khadija Benis, 2021. "Designing an Energy-Resilient Neighbourhood Using an Urban Building Energy Model," Energies, MDPI, vol. 14(15), pages 1-17, July.
    2. Johari, F. & Lindberg, O. & Ramadhani, U.H. & Shadram, F. & Munkhammar, J. & Widén, J., 2024. "Analysis of large-scale energy retrofit of residential buildings and their impact on the electricity grid using a validated UBEM," Applied Energy, Elsevier, vol. 361(C).
    3. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    4. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    5. Avichal Malhotra & Simon Raming & Jérôme Frisch & Christoph van Treeck, 2021. "Open-Source Tool for Transforming CityGML Levels of Detail," Energies, MDPI, vol. 14(24), pages 1-26, December.
    6. Pasichnyi, Oleksii & Wallin, Jörgen & Kordas, Olga, 2019. "Data-driven building archetypes for urban building energy modelling," Energy, Elsevier, vol. 181(C), pages 360-377.
    7. Kobashi, Takuro & Choi, Younghun & Hirano, Yujiro & Yamagata, Yoshiki & Say, Kelvin, 2022. "Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts," Applied Energy, Elsevier, vol. 306(PB).
    8. Krarti, Moncef & Aldubyan, Mohammad & Williams, Eric, 2020. "Residential building stock model for evaluating energy retrofit programs in Saudi Arabia," Energy, Elsevier, vol. 195(C).
    9. Perwez, Usama & Yamaguchi, Yohei & Ma, Tao & Dai, Yanjun & Shimoda, Yoshiyuki, 2022. "Multi-scale GIS-synthetic hybrid approach for the development of commercial building stock energy model," Applied Energy, Elsevier, vol. 323(C).
    10. Vahid-Ghavidel, Morteza & Jafari, Mehdi & Letellier-Duchesne, Samuel & Berzolla, Zachary & Reinhart, Christoph & Botterud, Audun, 2024. "Integrated energy demand-supply modeling for low-carbon neighborhood planning," Applied Energy, Elsevier, vol. 358(C).
    11. Paolo Civiero & Jordi Pascual & Joaquim Arcas Abella & Ander Bilbao Figuero & Jaume Salom, 2021. "PEDRERA. Positive Energy District Renovation Model for Large Scale Actions," Energies, MDPI, vol. 14(10), pages 1-21, May.
    12. Yael Nidam & Ali Irani & Jamie Bemis & Christoph Reinhart, 2023. "Census-based urban building energy modeling to evaluate the effectiveness of retrofit programs," Environment and Planning B, , vol. 50(9), pages 2394-2406, November.
    13. Xavier Faure & Tim Johansson & Oleksii Pasichnyi, 2022. "The Impact of Detail, Shadowing and Thermal Zoning Levels on Urban Building Energy Modelling (UBEM) on a District Scale," Energies, MDPI, vol. 15(4), pages 1-18, February.
    14. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    15. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    16. Gholami, M. & Torreggiani, D. & Tassinari, P. & Barbaresi, A., 2021. "Narrowing uncertainties in forecasting urban building energy demand through an optimal archetyping method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Prataviera, Enrico & Zarrella, Angelo & Morejohn, Joshua & Narayanan, Vinod, 2024. "Exploiting district cooling network and urban building energy modeling for large-scale integrated energy conservation analyses," Applied Energy, Elsevier, vol. 356(C).
    18. Oraiopoulos, A. & Howard, B., 2022. "On the accuracy of Urban Building Energy Modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Jacopo Gaspari & Michaela De Giglio & Ernesto Antonini & Vincenzo Vodola, 2020. "A GIS-Based Methodology for Speedy Energy Efficiency Mapping: A Case Study in Bologna," Energies, MDPI, vol. 13(9), pages 1-19, May.
    20. Ehsan Kamel, 2022. "A Systematic Literature Review of Physics-Based Urban Building Energy Modeling (UBEM) Tools, Data Sources, and Challenges for Energy Conservation," Energies, MDPI, vol. 15(22), pages 1-24, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2618-:d:1658986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.