Evaluating the Impact of Frequency Decomposition Techniques on LSTM-Based Household Energy Consumption Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Majdi Frikha & Khaled Taouil & Ahmed Fakhfakh & Faouzi Derbel, 2024. "Predicting Power Consumption Using Deep Learning with Stationary Wavelet," Forecasting, MDPI, vol. 6(3), pages 1-21, September.
- Vinothini Arumugham & Hayder M. A. Ghanimi & Denis A. Pustokhin & Irina V. Pustokhina & Vidya Sagar Ponnam & Meshal Alharbi & Parkavi Krishnamoorthy & Sudhakar Sengan, 2023. "An Artificial-Intelligence-Based Renewable Energy Prediction Program for Demand-Side Management in Smart Grids," Sustainability, MDPI, vol. 15(6), pages 1-26, March.
- Sun-Youn Shin & Han-Gyun Woo, 2022. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
- Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko, 2021. "ARIMA Models in Electrical Load Forecasting and Their Robustness to Noise," Energies, MDPI, vol. 14(23), pages 1-22, November.
- Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
- Juan Viera & Jose Aguilar & Maria Rodríguez-Moreno & Carlos Quintero-Gull, 2023. "Analysis of the Behavior Pattern of Energy Consumption through Online Clustering Techniques," Energies, MDPI, vol. 16(4), pages 1-17, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Adinkrah, Julius & Kemausuor, Francis & Tutu Tchao, Eric & Nunoo-Mensah, Henry & Agbemenu, Andrew Selasi & Adu-Poku, Akwasi & Kponyo, Jerry John, 2025. "Artificial intelligence-based strategies for sustainable energy planning and electricity demand estimation: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
- Pruethsan Sutthichaimethee & Worawat Sa-Ngiamvibool & Buncha Wattana & Jianhui Luo & Supannika Wattana, 2025. "Enhancing Sustainable Strategic Governance for Energy-Consumption Reduction Towards Carbon Neutrality in the Energy and Transportation Sectors," Sustainability, MDPI, vol. 17(6), pages 1-24, March.
- Olga Orynycz & Gabriel Santos Rodrigues & João Gilberto Mendes dos Reis & Ewa Kulesza & Jonas Matijošius & Sivanilza Teixeira Machado, 2025. "Energy and Environmental Benefits of In-Motion Charging Trolleybuses: A Case Study of Vilnius," Energies, MDPI, vol. 18(12), pages 1-21, June.
- Zaher Abusaq & Sadaf Zahoor & Muhammad Salman Habib & Mudassar Rehman & Jawad Mahmood & Mohammad Kanan & Ray Tahir Mushtaq, 2023. "Improving Energy Performance in Flexographic Printing Process through Lean and AI Techniques: A Case Study," Energies, MDPI, vol. 16(4), pages 1-15, February.
- Héctor Chávez & Yuri Molina, 2025. "Geospatial Forecasting of Electric Energy in Distribution Systems Using Segmentation and Machine Learning with Convolutional Methods," Energies, MDPI, vol. 18(2), pages 1-28, January.
- Yang, Chengying & Wu, Zhixin & Li, Xuetao & Fars, Ashk, 2024. "Risk-constrained stochastic scheduling for energy hub: Integrating renewables, demand response, and electric vehicles," Energy, Elsevier, vol. 288(C).
- Quota Alief Sias & Rahma Gantassi & Yonghoon Choi & Jeong Hwan Bae, 2024. "Recurrence Multilinear Regression Technique for Improving Accuracy of Energy Prediction in Power Systems," Energies, MDPI, vol. 17(20), pages 1-15, October.
- Jiakang Wang & Hui Liu & Guangji Zheng & Ye Li & Shi Yin, 2023. "Short-Term Load Forecasting Based on Outlier Correction, Decomposition, and Ensemble Reinforcement Learning," Energies, MDPI, vol. 16(11), pages 1-16, May.
- Kamran Hassanpouri Baesmat & Zeinab Farrokhi & Grzegorz Chmaj & Emma E. Regentova, 2025. "Parallel Multi-Model Energy Demand Forecasting with Cloud Redundancy: Leveraging Trend Correction, Feature Selection, and Machine Learning," Forecasting, MDPI, vol. 7(2), pages 1-18, May.
- Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
- Shengzeng Li & Yiwen Zhong & Jiaxiang Lin, 2022. "AWS-DAIE: Incremental Ensemble Short-Term Electricity Load Forecasting Based on Sample Domain Adaptation," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
- Arsalan Masood & Ubaid Ahmed & Syed Zulqadar Hassan & Ahsan Raza Khan & Anzar Mahmood, 2025. "Economic Value Creation of Artificial Intelligence in Supporting Variable Renewable Energy Resource Integration to Power Systems: A Systematic Review," Sustainability, MDPI, vol. 17(6), pages 1-42, March.
- Te Li & Mengze Zhang & Yan Zhou, 2024. "LTPNet Integration of Deep Learning and Environmental Decision Support Systems for Renewable Energy Demand Forecasting," Papers 2410.15286, arXiv.org.
- Wang, Yafei & Shi, Ming & Liu, Junnan & Zhong, Min & Ran, Rong, 2025. "The impact of digital-real integration on energy productivity under a multi-governance framework: The mediating role of AI and embodied technological progress," Energy Economics, Elsevier, vol. 142(C).
- Zoran Pajić & Zoran Janković & Aleksandar Selakov, 2024. "Autoencoder-Driven Training Data Selection Based on Hidden Features for Improved Accuracy of ANN Short-Term Load Forecasting in ADMS," Energies, MDPI, vol. 17(20), pages 1-14, October.
- Xiu Ji & Mingge Li & Zheyu Yue & Haifeng Zhang & Yizhu Wang, 2024. "Renewable Energy Consumption Strategies for Electric Vehicle Aggregators Based on a Two-Layer Game," Energies, MDPI, vol. 18(1), pages 1-22, December.
- Milosz Smolarczyk & Jakub Pawluk & Alicja Kotyla & Sebastian Plamowski & Katarzyna Kaminska & Krzysztof Szczypiorski, 2023. "Machine Learning Algorithms for Identifying Dependencies in OT Protocols," Energies, MDPI, vol. 16(10), pages 1-24, May.
- Aydin Zaboli & Swetha Rani Kasimalla & Kuchan Park & Younggi Hong & Junho Hong, 2024. "A Comprehensive Review of Behind-the-Meter Distributed Energy Resources Load Forecasting: Models, Challenges, and Emerging Technologies," Energies, MDPI, vol. 17(11), pages 1-27, May.
- Yao, Haowei & Qu, Pengyu & Qin, Hengjie & Lou, Zhen & Wei, Xiaoge & Song, Huaitao, 2024. "Multidimensional electric power parameter time series forecasting and anomaly fluctuation analysis based on the AFFC-GLDA-RL method," Energy, Elsevier, vol. 313(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2507-:d:1654688. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.