IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1947-d1378747.html
   My bibliography  Save this article

A Time Series Forecasting Approach Based on Meta-Learning for Petroleum Production under Few-Shot Samples

Author

Listed:
  • Zhichao Xu

    (School of Petroleum Engineering, Yangtze University, Wuhan 430100, China)

  • Gaoming Yu

    (School of Petroleum Engineering, Yangtze University, Wuhan 430100, China)

Abstract

Accurate prediction of crude petroleum production in oil fields plays a crucial role in analyzing reservoir dynamics, formulating measures to increase production, and selecting ways to improve recovery factors. Current prediction methods mainly include reservoir engineering methods, numerical simulation methods, and deep learning methods, and the required prerequisite is a large amount of historical data. However, when the data used to train the model are insufficient, the prediction effect will be reduced dramatically. In this paper, a time series-related meta-learning (TsrML) method is proposed that can be applied to the prediction of petroleum time series containing small samples and can address the limitations of traditional deep learning methods for the few-shot problem, thereby supporting the development of production measures. The approach involves an architecture divided into meta-learner and base-learner, which learns initialization parameters from 89 time series datasets. It can be quickly adapted to achieve excellent and accurate predictions with small samples in the oil field. Three case studies were performed using time series from two actual oil fields. For objective evaluation, the proposed method is compared with several traditional methods. Compared to traditional deep learning methods, RMSE is decreased by 0.1766 on average, and MAPE is decreased by 4.8013 on average. The empirical results show that the proposed method outperforms the traditional deep learning methods.

Suggested Citation

  • Zhichao Xu & Gaoming Yu, 2024. "A Time Series Forecasting Approach Based on Meta-Learning for Petroleum Production under Few-Shot Samples," Energies, MDPI, vol. 17(8), pages 1-30, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1947-:d:1378747
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1947/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1947/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1947-:d:1378747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.