IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1785-d1372055.html
   My bibliography  Save this article

Technical Language Processing of Nuclear Power Plants Equipment Reliability Data

Author

Listed:
  • Congjian Wang

    (Idaho National Laboratory, 1955 Fremont Ave., Idaho Falls, ID 83415, USA)

  • Diego Mandelli

    (Idaho National Laboratory, 1955 Fremont Ave., Idaho Falls, ID 83415, USA)

  • Joshua Cogliati

    (Idaho National Laboratory, 1955 Fremont Ave., Idaho Falls, ID 83415, USA)

Abstract

Operating nuclear power plants (NPPs) generate and collect large amounts of equipment reliability (ER) element data that contain information about the status of components, assets, and systems. Some of this information is in textual form where the occurrence of abnormal events or maintenance activities are described. Analyses of NPP textual data via natural language processing (NLP) methods have expanded in the last decade, and only recently the true potential of such analyses has emerged. So far, applications of NLP methods have been mostly limited to classification and prediction in order to identify the nature of the given textual element (e.g., safety or non-safety relevant). In this paper, we target a more complex problem: the automatic generation of knowledge based on a textual element in order to assist system engineers in assessing an asset’s historical health performance. The goal is to assist system engineers in the identification of anomalous behaviors, cause–effect relations between events, and their potential consequences, and to support decision-making such as the planning and scheduling of maintenance activities. “Knowledge extraction” is a very broad concept whose definition may vary depending on the application context. In our particular context, it refers to the process of examining an ER textual element to identify the systems or assets it mentions and the type of event it describes (e.g., component failure or maintenance activity). In addition, we wish to identify details such as measured quantities and temporal or cause–effect relations between events. This paper describes how ER textual data elements are first preprocessed to handle typos, acronyms, and abbreviations, then machine learning (ML) and rule-based algorithms are employed to identify physical entities (e.g., systems, assets, and components) and specific phenomena (e.g., failure or degradation). A few applications relevant from an NPP ER point of view are presented as well.

Suggested Citation

  • Congjian Wang & Diego Mandelli & Joshua Cogliati, 2024. "Technical Language Processing of Nuclear Power Plants Equipment Reliability Data," Energies, MDPI, vol. 17(7), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1785-:d:1372055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1785/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1785/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1785-:d:1372055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.