IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p908-d1339376.html
   My bibliography  Save this article

LCA of Recycled (NdDy)FeB Permanent Magnets through Hydrogen Decrepitation

Author

Listed:
  • Antonella Accardo

    (Department of Energetics, Interdepartmental Center for Automotive Research and Sustainable Mobility—CARS@PoliTO, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy)

  • Trentalessandro Costantino

    (Department of Energetics, Interdepartmental Center for Automotive Research and Sustainable Mobility—CARS@PoliTO, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy)

  • Ezio Spessa

    (Department of Energetics, Interdepartmental Center for Automotive Research and Sustainable Mobility—CARS@PoliTO, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy)

Abstract

Compared to conventional fossil-fueled vehicles, electric vehicles offer several environmental benefits. However, even electric vehicles are not completely environmentally friendly because many of their parts are not recycled today. These parts, especially the magnets that power them, end up in landfills at the end of the vehicle’s life cycle. This study aims to evaluate the environmental impacts of recycled (NdDy)FeB permanent magnets obtained by means of a novel hydrogen-decrepitation-based, magnet-to-magnet recycling technique. The Life Cycle Assessment methodology was used to compare, on a like-to-like basis, recycled and virgin permanent magnets. The core data provided by an industry partner served as the foundation for modelling the recycling process. Three different functional units were investigated based on three parameters, namely the magnet mass, magnetization coercivity, and energy product. Results revealed that the recycled magnet outperformed the virgin magnet in most impact categories. In terms of carbon footprint, recycling permanent magnets through hydrogen decrepitation would allow for an 18─33% reduction with respect to their production from virgin materials, depending on the assumed functional unit.

Suggested Citation

  • Antonella Accardo & Trentalessandro Costantino & Ezio Spessa, 2024. "LCA of Recycled (NdDy)FeB Permanent Magnets through Hydrogen Decrepitation," Energies, MDPI, vol. 17(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:908-:d:1339376
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/908/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/908/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:908-:d:1339376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.