IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2506-d1400253.html
   My bibliography  Save this article

Electrical Power Systems Reinforcement through Overall Contingency Index Analysis and Improvement

Author

Listed:
  • Diego Romero

    (Master’s Program in Electricity, Salesian Polytechnic University, Quito EC170702, Ecuador)

  • Diego Carrión

    (Smart Grid Research Group—GIREI (Spanish Acronym), Electrical Engineering Deparment, Salesian Polytechnic University, Quito EC170702, Ecuador
    Master’s Program in Artificial Intelligence, Valencia International University, 46002 Valencia, Spain)

  • Manuel Jaramillo

    (Smart Grid Research Group—GIREI (Spanish Acronym), Electrical Engineering Deparment, Salesian Polytechnic University, Quito EC170702, Ecuador)

Abstract

This paper analyzes the behavior of an electrical power system when N-1 contingencies occur in the transmission stage, which can be produced by incorrect operation of the protection relays, phenomena of natural origin, or increased loadability, which affect the operation and reliability of the electrical system. The operation output of a transmission line results in the variation of the nominal values of the electrical parameters involved because they disturb the stability of the generation, transmission systems, and the supply of electrical energy to the loads, such as voltages and angles of the nodes and the active and reactive power of the system. The proposed methodology was based on analyzing the different electrical parameters of the power system, quantifying the contingency index in a state of regular operation, and comparing it to operation in contingency N-1, with which the most severe contingency was determined and, therefore, achieved; identifying contingencies that can cause system collapses; improving the contingency index from 23.08555 to 22.9276624 for the L16–19 contingency and to 22.9795235 for the L21–22 contingency, which are the most severe contingencies determined with the proposed methodology. To test the proposed methodology, the IEEE 39 bus-bar test system was considered, and the elements that should be implemented to avoid the vulnerability of the power system to N-1 contingencies were determined.

Suggested Citation

  • Diego Romero & Diego Carrión & Manuel Jaramillo, 2024. "Electrical Power Systems Reinforcement through Overall Contingency Index Analysis and Improvement," Energies, MDPI, vol. 17(11), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2506-:d:1400253
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2506/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2506-:d:1400253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.