IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p102-d1306399.html
   My bibliography  Save this article

Effect of Carboxyl-Doped Graphene Nanoplatelets as an Electrode for Supercapacitors According to Surface Property Changes via the Control of Conditions

Author

Listed:
  • Ji-Woo Park

    (Department of Chemical Engineering, College of Engineering, Wonkwang University, Iksan 54538, Republic of Korea)

  • In-Yup Jeon

    (Department of Chemical Engineering, College of Engineering, Wonkwang University, Iksan 54538, Republic of Korea
    Nanoscale Sciences and Technology Institute, Wonkwang University, Iksan 54538, Republic of Korea)

  • Young-Wan Ju

    (Department of Chemical Engineering, College of Engineering, Wonkwang University, Iksan 54538, Republic of Korea
    Nanoscale Sciences and Technology Institute, Wonkwang University, Iksan 54538, Republic of Korea
    ICT Fusion Green Energy Research Institute, Wonkwang University, Iksan 54538, Republic of Korea)

Abstract

Energy storage systems (ESSs) are attracting increasing attention for the development of sustainable and renewable energy technologies owing to limited fossil fuels. Supercapacitors are gaining significant interest as energy storage devices owing to their high-power density and long-term cycle stability. The use of suitable electrode materials affects the performance of supercapacitors. In this study, we fabricated a carboxyl-doped graphene nanoplatelet (CGnP) via a mechanochemical reaction. Additionally, CGnP was activated by controlling parameters such as temperature, flow rate, and maintenance period and evaluated as an electrode material for supercapacitors. The effect of the specific surface area (SSA) and functional groups of the fabricated samples on the capacitance was confirmed by controlling the activation parameters. The activated CGnP with 300 mL/min of CO 2 at 1173 K for 4 h exhibited a high SSA of 1300 m 2 /g. The activated CGnP (180 F/g), with a high SSA, showed an increased capacitance of 46% compared to pristine CGnP (123 F/g). Additionally, activated CGnP1100 demonstrated good wettability and exhibited excellent stability with a low capacitance decrease of 6.1%, even after 10,000 cycles.

Suggested Citation

  • Ji-Woo Park & In-Yup Jeon & Young-Wan Ju, 2023. "Effect of Carboxyl-Doped Graphene Nanoplatelets as an Electrode for Supercapacitors According to Surface Property Changes via the Control of Conditions," Energies, MDPI, vol. 17(1), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:102-:d:1306399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burke, Andrew, 2000. "Ultracapacitors: Why, How, and Where is the Technology," Institute of Transportation Studies, Working Paper Series qt9n905017, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    2. Simon Krüner & Christoph M. Hackl, 2022. "Nonlinear Modelling and Control of a Power Smoothing System for a Novel Wave Energy Converter Prototype," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    3. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    4. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    5. Ataur Rahman & Kyaw Myo Aung & Sany Ihsan & Raja Mazuir Raja Ahsan Shah & Mansour Al Qubeissi & Mohannad T. Aljarrah, 2023. "Solar Energy Dependent Supercapacitor System with ANFIS Controller for Auxiliary Load of Electric Vehicles," Energies, MDPI, vol. 16(6), pages 1-23, March.
    6. Guangyue Gu & Youliang Lao & Yaxiong Ji & Shasha Yuan & Haijing Liu & Peng Du, 2023. "Development of hybrid super-capacitor and lead-acid battery power storage systems," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 159-166.
    7. A.K. Shukla & T. Prem Kumar, 2013. "Nanostructured electrode materials for electrochemical energy storage and conversion," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 14-30, January.
    8. Uzunoglu, M. & Onar, O.C. & Alam, M.S., 2009. "Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications," Renewable Energy, Elsevier, vol. 34(3), pages 509-520.
    9. Shuyue Lin & Xin Tong & Xiaowei Zhao & George Weiss, 2018. "The Parallel Virtual Infinite Capacitor Applied to DC-Link Voltage Filtering for Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-19, June.
    10. Farhan Farooq & Asad Khan & Seung June Lee & Mohammad Mahad Nadeem & Woojin Choi, 2021. "A Multi-Channel Fast Impedance Spectroscopy Instrument Developed for Quality Assurance of Super-Capacitors," Energies, MDPI, vol. 14(4), pages 1-14, February.
    11. Jooyoung Park & Gyo-Bum Chung & Jungdong Lim & Dongsu Yang, 2015. "Dynamic Power Management for Portable Hybrid Power-Supply Systems Utilizing Approximate Dynamic Programming," Energies, MDPI, vol. 8(6), pages 1-21, May.
    12. Bajpai, Prabodh & Dash, Vaishalee, 2012. "Hybrid renewable energy systems for power generation in stand-alone applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2926-2939.
    13. Peng, Hui & Wang, Junzheng & Shen, Wei & Shi, Dawei & Huang, Yuan, 2019. "Compound control for energy management of the hybrid ultracapacitor-battery electric drive systems," Energy, Elsevier, vol. 175(C), pages 309-319.
    14. Chia, Yen Yee & Lee, Lam Hong & Shafiabady, Niusha & Isa, Dino, 2015. "A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine," Applied Energy, Elsevier, vol. 137(C), pages 588-602.
    15. Barzegar, Farshad & Bello, Abdulhakeem & Dangbegnon, Julien K. & Manyala, Ncholu & Xia, Xiaohua, 2017. "Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability," Applied Energy, Elsevier, vol. 207(C), pages 417-426.
    16. Yu, Huilong & Tarsitano, Davide & Hu, Xiaosong & Cheli, Federico, 2016. "Real time energy management strategy for a fast charging electric urban bus powered by hybrid energy storage system," Energy, Elsevier, vol. 112(C), pages 322-331.
    17. Fang, Xiang & Kutkut, Nasser & Shen, John & Batarseh, Issa, 2011. "Analysis of generalized parallel-series ultracapacitor shift circuits for energy storage systems," Renewable Energy, Elsevier, vol. 36(10), pages 2599-2604.
    18. Hemmati, Reza & Saboori, Hedayat, 2016. "Emergence of hybrid energy storage systems in renewable energy and transport applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 11-23.
    19. Jeongbin Lee & Jaeshin Yi & Daeyong Kim & Chee Burm Shin & Kyung-Seok Min & Jongrak Choi & Ha-Young Lee, 2014. "Modeling of the Electrical and Thermal Behaviors of an Ultracapacitor," Energies, MDPI, vol. 7(12), pages 1-15, December.
    20. Hannan, M.A. & Azidin, F.A. & Mohamed, A., 2014. "Hybrid electric vehicles and their challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 135-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:102-:d:1306399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.