IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p2010-d1072277.html
   My bibliography  Save this article

Adaptive Finite Element Simulation of Double-Diffusive Convection

Author

Listed:
  • Jorge Milhazes

    (Romax Technology Ltd., Ergo House, Mere Way, Ruddington Fields Business Park, Nottingham NG11 6JS, UK)

  • Pedro J. Coelho

    (IDMEC, Mechanical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

Abstract

Double-diffusive convection plays an important role in many physical phenomena of practical importance. However, the numerical simulation of these phenomena is challenging since fine meshes are often required to capture the flow physics. Hence, several different numerical methods have been employed in the past. This work reports the development and application of an adaptive finite element method for the simulation of these phenomena, thereby avoiding the need for the use of very fine meshes over the whole domain. The weak formulation of the conservation equations for mass, momentum, energy and species concentration is used. The Boussinesq approximation relates the density of the fluid to the temperature and/or the species concentration. A second-order backward difference method is used for time discretization and the Galerkin method is employed for spatial discretization. Both adaptive time step and grid refinement techniques are employed, and the code is parallelized using MPI. Three different stabilization methods of the convective-diffusion equations are compared; namely, the streamline upwind Petrov–Galerkin (SUPG) method, and two modified methods aimed at diminishing spurious oscillations that include an artificial diffusion term. This diffusion term may be either isotropic or orthogonal to the streamlines. The addition of artificial isotropic diffusion to the SUPG method provides enhanced stability. The method is applied to double-diffusive finger convection in a sucrose-salt aqueous mixture and a stratified salt solution heated from below. The method accurately reproduces the experimentally observed temporal evolution of the salt fingers in the former case and the location of the interfaces between convective and non-convective zones in the latter.

Suggested Citation

  • Jorge Milhazes & Pedro J. Coelho, 2023. "Adaptive Finite Element Simulation of Double-Diffusive Convection," Energies, MDPI, vol. 16(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2010-:d:1072277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/2010/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/2010/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2010-:d:1072277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.