IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1598-d1058555.html
   My bibliography  Save this article

A Novel Approach Using High Charging Voltage for the Restoration of Discarded Lead Acid Batteries

Author

Listed:
  • Chee Hiun Lee

    (Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia)

  • Jianhui Wong

    (Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia)

  • Yun Seng Lim

    (Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia)

Abstract

A lead acid battery is an old renewable battery that is usually discharged to deliver a high surge current to ignite a petrol-based engine. Nowadays, there are different improved versions of lead acid batteries that can deliver high energy densities with low maintenance costs. As the batteries are charged and discharged repeatedly over time, the amount of lead sulfate across the electrode plates grows, reducing the total surface areas of the plates and, thus, the rate of ionization between the electrolyte and the plate surfaces. The batteries then eventually come to the end of their service lives. Even with the improved versions, lead acid batteries are usually discarded at their retirement. However, if the retired batteries can be used for other purposes, the circular economy of the batteries can be improved significantly. It is therefore necessary to study the physical characteristics of the retired batteries and explore means of improving their charging and discharging capabilities. This paper presents research on improving the storage capability of retired lead acid batteries by applying different charging voltages across them. The results show that the electrode plates of the retired batteries become porous when a high charging voltage is applied, hence increasing the total surface area of the plate surfaces. The storage capability of the batteries is improved because the accumulated lead sulfate is removed from the electrode plates by the high charging voltage. As a result, the rate of ionization is increased, hence restoring the storing capability of the retired batteries to up to 71–89% of the original capacity rating.

Suggested Citation

  • Chee Hiun Lee & Jianhui Wong & Yun Seng Lim, 2023. "A Novel Approach Using High Charging Voltage for the Restoration of Discarded Lead Acid Batteries," Energies, MDPI, vol. 16(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1598-:d:1058555
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1598/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1598/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qin He & Yabing Zha & Quan Sun & Zhengqiang Pan & Tianyu Liu, 2017. "Capacity Fast Prediction and Residual Useful Life Estimation of Valve Regulated Lead Acid Battery," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-9, February.
    2. Jose-Maria Delgado-Sanchez & Isidoro Lillo-Bravo, 2020. "Influence of Degradation Processes in Lead–Acid Batteries on the Technoeconomic Analysis of Photovoltaic Systems," Energies, MDPI, vol. 13(16), pages 1-28, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A.S.M. Mominul Hasan, 2020. "Electric Rickshaw Charging Stations as Distributed Energy Storages for Integrating Intermittent Renewable Energy Sources: A Case of Bangladesh," Energies, MDPI, vol. 13(22), pages 1-28, November.
    2. Yuhang Fan & Qiongbin Lin & Ruochen Huang, 2024. "Non-Invasive Method-Based Estimation of Battery State-of-Health with Dynamical Response Characteristics of Load Surges," Energies, MDPI, vol. 17(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1598-:d:1058555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.