IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p933-d1035486.html
   My bibliography  Save this article

Perspective on Predictive Modeling: Current Status, New High-Order Methodology and Outlook for Energy Systems

Author

Listed:
  • Dan Gabriel Cacuci

    (Center for Nuclear Science and Energy, University of South Carolina, Columbia, SC 29208, USA)

Abstract

This work presents a perspective on deterministic predictive modeling methodologies, which aim at extracting best-estimate values for model responses and parameters along with reduced predicted uncertainties for these best-estimate values. The two oldest such methodologies are the data-adjustment method, which stems from the nuclear energy field, and the data-assimilation method, which is implemented in the geophysical sciences. Both of these methodologies attempt to minimize, in the least-square sense, a user-defined functional that represents the discrepancies between computed and measured model responses. These two methodologies were briefly reviewed and shown to be inconsistent even to first-order in the sensitivities of the response to the model parameters. In contrast to these methodologies, it was shown that the “maximum entropy”-based predictive modeling methodology (called BERRU-PM) that was developed by the author not only dispenses with the subjective “user-chosen functional to be minimized” but is also inherently amenable to high-order formulations. This inherent potential was illustrated by presenting a novel, higher-order, MaxEnt-based predictive modeling methodology, labelled BERRU-PM-2+, which is complete and exact to second-order sensitivities and moments of both the a priori and posterior distributions of responses and parameters, while explicitly including third- and fourth-order sensitivities and correlations, thus indicating the mechanism for incorporating information of orders higher than second in predictive modeling. The presentation of this new predictive modeling methodology also aims at motivating a widespread application of predictive modeling principles and methodologies in the energy sciences for obtaining best-estimate results with reduced uncertainties.

Suggested Citation

  • Dan Gabriel Cacuci, 2023. "Perspective on Predictive Modeling: Current Status, New High-Order Methodology and Outlook for Energy Systems," Energies, MDPI, vol. 16(2), pages 1-35, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:933-:d:1035486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/933/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:933-:d:1035486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.