IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8018-d1298464.html
   My bibliography  Save this article

Energy-Efficient and Timeliness-Aware Continual Learning Management System

Author

Listed:
  • Dong-Ki Kang

    (Department of Computer Science and Artificial Intelligence, Jeonbuk National University, Jeonju 54896, Republic of Korea)

Abstract

Continual learning has recently become a primary paradigm for deep neural network models in modern artificial intelligence services, where streaming data patterns frequently and irregularly change over time in dynamic environments. Unfortunately, there is still a lack of studies on computing cluster management for the processing of continual learning tasks, particularly in terms of the timeliness of model updates and associated energy consumption. In this paper, we propose a novel timeliness-aware continual learning management (TA-CLM) system aimed at ensuring timely deep neural network model updates for continual learning tasks while minimizing the energy consumption of computing worker nodes in clusters. We introduce novel penalty cost functions to penalize quantitatively deep neural network model update latency and present the associated optimization formulation to ensure the best task allocation. Additionally, we design a simulated annealing-based optimizer, which is a meta-heuristic technique and easy to implement, to solve the non-convex and non-linear optimization problem. We demonstrate that the proposed TA-CLM system improves both latency and energy performance over its competitors by an average of 51.3% and 51.6%, respectively, based on experimental results using raw data from well-known deep neural network models on an NVIDIA GPU-based testbed and a large-scale simulation environment.

Suggested Citation

  • Dong-Ki Kang, 2023. "Energy-Efficient and Timeliness-Aware Continual Learning Management System," Energies, MDPI, vol. 16(24), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8018-:d:1298464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8018/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8018/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8018-:d:1298464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.