IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7388-d1272162.html
   My bibliography  Save this article

Varied-Frequency CC–CV Inductive Wireless Power Transfer with Efficiency-Regulated EV Charging for an Electric Golf Cart

Author

Listed:
  • Jutturit Thongpron

    (Clean Energy System (CES-RMUTL), Division of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL), Hauy Kaew Rd., Chang Phueg, Chiang Mai 50300, Thailand)

  • Uthen Kamnarn

    (Green Technology and Power Conversion (GTPC), Division of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL), Hauy Kaew Rd., Chang Phueg, Chiang Mai 50300, Thailand)

  • Anon Namin

    (Clean Energy System (CES-RMUTL), Division of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL), Hauy Kaew Rd., Chang Phueg, Chiang Mai 50300, Thailand)

  • Thanet Sriprom

    (Clean Energy System (CES-RMUTL), Division of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL), Hauy Kaew Rd., Chang Phueg, Chiang Mai 50300, Thailand)

  • Ekkachai Chaidee

    (Clean Energy System (CES-RMUTL), Division of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL), Hauy Kaew Rd., Chang Phueg, Chiang Mai 50300, Thailand)

  • Suchart Janjornmanit

    (Green Technology and Power Conversion (GTPC), Division of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL), Hauy Kaew Rd., Chang Phueg, Chiang Mai 50300, Thailand)

  • Samart Yachiangkam

    (Green Technology and Power Conversion (GTPC), Division of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL), Hauy Kaew Rd., Chang Phueg, Chiang Mai 50300, Thailand)

  • Chanyut Karnjanapiboon

    (Green Technology and Power Conversion (GTPC), Division of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL), Hauy Kaew Rd., Chang Phueg, Chiang Mai 50300, Thailand)

  • Phatiphat Thounthong

    (Renewable Energy Research Centre (RERC), Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand)

  • Noureddine Takorabet

    (Groupe de Recherche en Energie Electrique de Nancy, Université de Lorraine, 54506 Nancy, France)

Abstract

Wireless electric vehicle (EV) charging is an important operation for valuable EV options in modern life. Inductive wireless EV charging needs constant current and voltage (CC–CV) charge controllers. This paper presents 750 W variable frequency CC–CV inductive wireless charging for an e-golf cart 50 Ah 72 V Li-ion battery. Due to this system’s low power, the system’s efficiency may be weak; the secondary-side (SS) maximum efficiency-controlled (MEC) converter was validated. The golf cart’s battery characteristics were evaluated to design and experiment with inductive wireless power transfer (IPT) coils and an integration system for a 42 kHz resonant frequency. The CC–CV charged control is an infrastructural part of the H-bridge inverter at varied frequencies from 50 kHz to 56 kHz when the DC input voltage is 310 V, and in the range of 44 kHz to 46 kHz at the 155 V input. The results found the charging of 9 A CC, 82 V CV and 730 W. The 310 V input voltage system without the SS MEC converter’s efficiencies was 62% to 72% and it was improved to 65% to 81% using the SS MEC converter. Finally, the best cases were validated at the 155 V DC input voltage and the system with the SS MEC converter had 76% to 86% efficiency.

Suggested Citation

  • Jutturit Thongpron & Uthen Kamnarn & Anon Namin & Thanet Sriprom & Ekkachai Chaidee & Suchart Janjornmanit & Samart Yachiangkam & Chanyut Karnjanapiboon & Phatiphat Thounthong & Noureddine Takorabet, 2023. "Varied-Frequency CC–CV Inductive Wireless Power Transfer with Efficiency-Regulated EV Charging for an Electric Golf Cart," Energies, MDPI, vol. 16(21), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7388-:d:1272162
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7388/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7388/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7388-:d:1272162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.