IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7304-d1269165.html
   My bibliography  Save this article

Enhanced Virtual Inertia Controller for Microgrid Applications

Author

Listed:
  • Ahmed Sheir

    (Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada)

  • Vijay K. Sood

    (Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada)

Abstract

Unlike Synchronous Generators (SGs), Virtual Synchronous Generators (VSGs) inertia is not fixed once it is manufactured and only has an upper limit defined by its energy storage components. In this paper, a novel Enhanced Virtual Inertia Controller (EVIC) is proposed. The proposed controller alters the VSG inertia coefficient between two limiting levels in response to a grid transient. The key difference between the proposed controller and the variable inertia controller is that the proposed EVIC causes a smooth transition in the inertia coefficient while the variable inertia controller causes a discontinuous jump in it. The proposed EVIC guarantees an adaptive response to grid dynamics, such that a negligible change occurs at small disturbances and a linear and smooth increase occurs at moderate disturbances. For large disturbances, the proposed controller smoothly oscillates the inertia between two saturation levels, which then quickly returns the converter to its steady-state operating point with minimum oscillations. A qualitative study of the performance and stability margin of the proposed controller was conducted using a large signal model (nonlinear model) of VSG connected to a microgrid. The large signal model provided a complete description of the converter’s behaviour under large disturbances, which is the area of interest of the proposed controller. It also contained the small-signal dynamics (linear dynamic) within the vicinity of the equilibrium (steady-state) point. Thus, a complete description of the proposed controller dynamics is conveyed to prove its validity and adaptability.

Suggested Citation

  • Ahmed Sheir & Vijay K. Sood, 2023. "Enhanced Virtual Inertia Controller for Microgrid Applications," Energies, MDPI, vol. 16(21), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7304-:d:1269165
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7304/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7304-:d:1269165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.