IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7211-d1265561.html
   My bibliography  Save this article

Smart Switching in Single-Phase Grid-Connected Photovoltaic Power Systems for Inrush Current Elimination

Author

Listed:
  • Gerardo de J. Martínez-Figueroa

    (Department of Electrical Engineering, ESEIAAT, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain)

  • Santiago Bogarra

    (Department of Electrical Engineering, ESEIAAT, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain)

  • Felipe Córcoles

    (Department of Electrical Engineering, ESEIAAT, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain)

Abstract

Grid-connected photovoltaic (PV) power systems are one of the most promising technologies to address growing energy demand and ecological challenges. This paper proposes smart switching to mitigate inrush currents during the connection of single-phase transformers used in PV systems. An effective inrush current mitigation contributes to the reliability of PV systems. The inrush current severity is influenced by the pseudorandom residual flux at the transformer core and the energization point-on-wave. The most common approach to avoid inrush currents is controlled connection, which requires prior knowledge of the residual flux. However, the residual flux can differ in each case, and its measurement or estimation can be impractical. The proposed smart switching is based on a comprehensive analysis of the residual flux and the de-energization trajectories, and only requires two pieces of data (ϕ RM and ϕ 0 , flux values of the static and dynamic loops when the respective currents are null), calculated from two simple no-load tests. It has a clear advantage over common approaches: no need to estimate or measure the residual flux before each connection, avoiding the need for expensive equipment or complex setups. Smart switching can be easily implemented in practical settings, as it considers different circuit breakers with distinctive aperture features, making it cost-effective for PV systems.

Suggested Citation

  • Gerardo de J. Martínez-Figueroa & Santiago Bogarra & Felipe Córcoles, 2023. "Smart Switching in Single-Phase Grid-Connected Photovoltaic Power Systems for Inrush Current Elimination," Energies, MDPI, vol. 16(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7211-:d:1265561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7211/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7211/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdellah Benabdelkader & Azeddine Draou & Abdulrahman AlKassem & Toufik Toumi & Mouloud Denai & Othmane Abdelkhalek & Marwa Ben Slimene, 2023. "Enhanced Power Quality in Single-Phase Grid-Connected Photovoltaic Systems: An Experimental Study," Energies, MDPI, vol. 16(10), pages 1-23, May.
    2. Carmen Mârza & Raluca Moldovan & Georgiana Corsiuc & Gelu Chisăliță, 2023. "Improving the Energy Performance of a Household Using Solar Energy: A Case Study," Energies, MDPI, vol. 16(18), pages 1-32, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agata Ołtarzewska & Dorota Anna Krawczyk, 2024. "Simulation and Performance Analysis of an Air-Source Heat Pump and Photovoltaic Panels Integrated with Service Building in Different Climate Zones of Poland," Energies, MDPI, vol. 17(5), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7211-:d:1265561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.