IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6872-d1250447.html
   My bibliography  Save this article

Evaluating the Operation of a Full-Scale Sequencing Batch Reactor–Reverse Osmosis–Evaporation System Used to Treat Landfill Leachates: Removal of Pollutants, Energy Consumption and Greenhouse Gas Emissions

Author

Listed:
  • Konstantinos Tsompanoglou

    (Regional Association of Solid Waste Management Agencies of Central Macedonia, Fragon 6-8, 54626 Thessaloniki, Greece
    Department of Environment, University of the Aegean, 81100 Mytilene, Greece)

  • Olga P. Koutsou

    (Department of Environment, University of the Aegean, 81100 Mytilene, Greece)

  • Athanasios S. Stasinakis

    (Department of Environment, University of the Aegean, 81100 Mytilene, Greece)

Abstract

Limited information is available in the literature regarding the energy consumption and the greenhouse gases emitted during landfill leachates treatment. A full-scale landfill leachates treatment system that included primary sedimentation, biological treatment in sequencing batch reactors, reverse osmosis and mechanical vapor recompression evaporation was monitored and evaluated for the removal of major pollutants, energy consumption and greenhouse gas emissions. Samples were taken during a period of two years from different points of the system, while the actual power consumption was calculated considering the available mechanical equipment and the hours of operation. The quantities of greenhouse gases emitted were estimated using appropriate equations and based on the operational characteristics of the system. According to chemical analyses, biological treatment resulted in partial removal of COD and total nitrogen, while the removal of BOD 5 and NH 4 -N was significant, reaching 90 and 98%, respectively. Use of reverse osmosis increased the removal of all pollutants, satisfying the requirements of the legislation on wastewater discharge into the environment. Power consumption was calculated to be 35.3 KWhr per m 3 of treated leachate, while mechanical vapor recompression evaporation was responsible for 60.5% of the total energy required. The contribution of other processes to energy consumption was as follows, in decreasing order: sequencing batch reactors > reverse osmosis > primary treatment. The roots blower vacuum pump used for mechanical vapor recompression evaporation, and the blowers providing air to the sequencing batch reactors, were the most energy-intensive pieces of apparatus, contributing 44.2% and 11.3% of the required energy, respectively. The quantity of greenhouse gases emitted was estimated to be 27.7 Kg CO 2eq per m 3 of treated leachates. Among the different processes used, biological treatment and mechanical vapor recompression evaporation contributed to 45.7% and 44.1% of the total emissions, respectively. The findings of this study reveal that an integrated landfill leachate treatment system that combines biological treatment and reverse osmosis can assure the protection of the aquatic environment by producing high-quality effluent; however, further research should be conducted regarding the sustainable management of reverse osmosis concentrate. Mechanical vapor recompression evaporation contributes significantly to the environmental footprint of the landfill leachates treatment system due to both high energy consumption and elevated emissions of greenhouse gases.

Suggested Citation

  • Konstantinos Tsompanoglou & Olga P. Koutsou & Athanasios S. Stasinakis, 2023. "Evaluating the Operation of a Full-Scale Sequencing Batch Reactor–Reverse Osmosis–Evaporation System Used to Treat Landfill Leachates: Removal of Pollutants, Energy Consumption and Greenhouse Gas Emis," Energies, MDPI, vol. 16(19), pages 1-10, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6872-:d:1250447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6872/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6872/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6872-:d:1250447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.