IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6700-d1242907.html
   My bibliography  Save this article

Analysis of Onshore Synthetic Inertia and Primary Control Reserve Contributions of Alternating Current-Side Meshed Offshore Grids with Voltage-Source Converter and Diode Rectifier Unit High-Voltage Direct Current Connections

Author

Listed:
  • Michael Herrmann

    (Institute of Electric Power Systems, Electric Power Engineering Section, Leibniz University Hannover, 30167 Hanover, Germany)

  • Merlin Alkemper

    (Institute of Electric Power Systems, Electric Power Engineering Section, Leibniz University Hannover, 30167 Hanover, Germany)

  • Lutz Hofmann

    (Institute of Electric Power Systems, Electric Power Engineering Section, Leibniz University Hannover, 30167 Hanover, Germany)

Abstract

The increasing use of renewable energy sources in place of conventional generation units is leading to a reduction in onshore inertia and to the development of offshore wind park grids connected by multiple high-voltage direct current (HVDC) connections to the onshore alternating current (AC) grid. For AC-side meshed offshore grids with voltage-source converter (VSC) and diode rectifier unit (DRU) HVDC connections towards onshore grids, this study focuses on the energetic feasibility of synthetic inertia (SI) and primary control reserve (PCR) contributions triggered locally at the onshore converters of both connection types. To this end, the obstacles preventing contributions for VSC HVDC connections and the mechanisms allowing contributions for DRU HVDC connections are identified first. Based on these findings, the article proposes an enhancement of the offshore HVDC converter controls that is continuously active and allows locally triggered onshore contributions at all onshore HVDC converters of both connection types without using communication and requiring only minimal system knowledge. Additional simulations confirm that, although the enhancement is continuously active, the operational performance of the offshore HVDC converter controls for normal offshore grid operation and its robustness against offshore AC-side faults are not affected.

Suggested Citation

  • Michael Herrmann & Merlin Alkemper & Lutz Hofmann, 2023. "Analysis of Onshore Synthetic Inertia and Primary Control Reserve Contributions of Alternating Current-Side Meshed Offshore Grids with Voltage-Source Converter and Diode Rectifier Unit High-Voltage Di," Energies, MDPI, vol. 16(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6700-:d:1242907
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6700/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6700-:d:1242907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.