IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5931-d1214768.html
   My bibliography  Save this article

A Comparative Analysis of Two-Phase Flow Boiling Heat Transfer Coefficient and Correlations for Hydrocarbons and Ethanol

Author

Listed:
  • Mohamed ElFaham

    (Department of Mechanical Engineering, Grand Forks, ND 58202, USA)

  • Clement C. Tang

    (Department of Mechanical Engineering, Grand Forks, ND 58202, USA)

Abstract

This study will present a comprehensive review of the two-phase flow boiling heat transfer coefficient of hydrocarbons such as propane (R-290), butane (R-600), iso-butane (R-600a), and ethanol at various experimental conditions. Studying the multiphase flow heat transfer coefficient is crucial for many types of heat transfer equipment to achieve higher efficiency for more compact design and cost reduction. One reason we chose hydrocarbons as refrigerants in this study is that they are of an ozone depletion potential equal to zero (ODP = 0) and a deficient level of direct global warming potential (GWP = 3). Moreover, hydrocarbons’ thermodynamic and thermophysical characteristics qualify them to be a strong candidate for more heat transfer applications, initially, by constructing a database for the working fluids using multiple existing experimental work. The current data that this study have collected for the flow boiling spans a wide range of parameters, such as mass flux, heat flux, operating pressure, saturation temperature, etc. Furthermore, by comparing the experimental multiphase heat transfer coefficient database with the anticipated values of each correlation, the prediction performance of 26 correlations found in the literature was assessed. This study allows the best prediction method to be selected based on the minimum deviation of predicted results from the experimental database provided based on the mean absolute error (MAE) calculated from the assessed correlations. The conclusions of such a study can also be helpful for developing more accurate correlation methods for these fluids and improving the prediction of their flow boiling characteristics.

Suggested Citation

  • Mohamed ElFaham & Clement C. Tang, 2023. "A Comparative Analysis of Two-Phase Flow Boiling Heat Transfer Coefficient and Correlations for Hydrocarbons and Ethanol," Energies, MDPI, vol. 16(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5931-:d:1214768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5931/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5931-:d:1214768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.