Author
Listed:
- Marian Łukaniszyn
(Department of Drive Automation and Robotics, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska Street 76, 45-272 Opole, Poland)
- Bernard Baron
(Department of Drive Automation and Robotics, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska Street 76, 45-272 Opole, Poland)
- Joanna Kolańska-Płuska
(Department of Drive Automation and Robotics, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska Street 76, 45-272 Opole, Poland)
- Łukasz Majka
(Department of Electrical Engineering and Computer Science, Faculty of Electrical Engineering, Silesian University of Technology, Akademicka Street 10, 44-100 Gliwice, Poland)
Abstract
The methodology and test results of a three-phase three-column transformer with a Dy connection group are presented in this paper. This study covers the dynamics of events that took place in the first period of the transient state caused by the energizing of the transformer under no-load conditions. The origin of inrush currents was analyzed. The influence of factors accompanying the switch-on and the impact of the model parameters on the distribution and maximum values of these currents was studied. In particular, the computational methods of taking into account the influence of residual magnetism in different columns of the transformer core, as well as the impact of the time instant determined in the voltage waveform at which the indicated voltage is supplied to a given transformer winding, were examined. The study was carried out using a nonlinear model constructed on the basis of classical modeling, in which hysteresis is not taken into account. Such a formulated model requires simplification, which is discussed in this paper. The model is described using a system of stiff nonlinear ordinary differential equations. In order to solve the stiff differential state equations set for the transient states of a three-phase transformer in a no-load condition, a Runge–Kutta method, namely the Radau IIA method, with ninth-order quadrature formulas was applied. All calculations were carried out using the authors’ own software, written in C#. A ready-made strategy for energizing a three-column three-phase transformer with a suitable pre-magnetization of its columns is given.
Suggested Citation
Marian Łukaniszyn & Bernard Baron & Joanna Kolańska-Płuska & Łukasz Majka, 2023.
"Inrush Current Reduction Strategy for a Three-Phase Dy Transformer Based on Pre-Magnetization of the Columns and Controlled Switching,"
Energies, MDPI, vol. 16(13), pages 1-21, July.
Handle:
RePEc:gam:jeners:v:16:y:2023:i:13:p:5238-:d:1189399
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5238-:d:1189399. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.