IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5140-d1186117.html
   My bibliography  Save this article

A Practical Model for Gas–Water Two-Phase Flow and Fracture Parameter Estimation in Shale

Author

Listed:
  • Pin Jia

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
    College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China)

  • Langyu Niu

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
    College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China)

  • Yang Li

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
    College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China)

  • Haoran Feng

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
    College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China)

Abstract

The gas flow in shale reservoirs is controlled by gas desorption diffusion and multiple flow mechanisms in the shale matrix. The treatment of hydraulic fracturing injects a large amount of fracturing fluids into shale reservoirs, and the fracturing fluids can only be recovered by 30~70%. The remaining fracturing fluid invades the reservoir in the form of a water invasion layer. In this paper, by introducing the concept of a water invasion layer, the hydraulic fracture network is di-vided into three zones: major fracture, water invasion layer and stimulated reservoir volume (SRV). The mathematical model considering gas desorption, the water invasion layer and gas–water two-phase flow in a major fracture is established in the Laplace domain, and the semi-analytical solution method is developed. The new model is validated by a commercial simulator. A field case from WY shale gas reservoir in southwestern China is used to verify the utility of the model. Several key parameters of major fracture and SRV are interpreted. The gas–water two-phase flow model established in this paper provides theoretical guidance for fracturing effectiveness evaluation and an efficient development strategy of shale gas reservoirs.

Suggested Citation

  • Pin Jia & Langyu Niu & Yang Li & Haoran Feng, 2023. "A Practical Model for Gas–Water Two-Phase Flow and Fracture Parameter Estimation in Shale," Energies, MDPI, vol. 16(13), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5140-:d:1186117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5140/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5140-:d:1186117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.