IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4936-d1178946.html
   My bibliography  Save this article

Numerical Tracking of Natural Gas Migration in Underground Gas Storage with Multilayered Sandstone and Fault-Bearing Caprocks

Author

Listed:
  • Shengnan Ban

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Hejuan Liu

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Haijun Mao

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xilin Shi

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xiaosong Qiu

    (Key Laboratory of Underground Storage of Oil and Gas Engineer of China National Petroleum Corporation, Langfang 065007, China)

  • Mancang Liu

    (Key Laboratory of Underground Storage of Oil and Gas Engineer of China National Petroleum Corporation, Langfang 065007, China)

  • Zhongshun Min

    (Liaohe Oilfield of China National Petroleum Corporation, Panjin 124010, China)

  • Yujia Song

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xinxing Wei

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The structure of caprocks is often greatly altered by different scales of faults or fissures in long-term geological tectonic evolution, and the sealing performance may be deteriorated. In this paper, a simplified geological model characterized as multilayered sandstone and fault-bearing caprocks extracted from the Shuang 6 underground gas storage located in the Liaohe oilfield was established. Different fault geometry (e.g., fault length, fault dip angle, and fault type) and seepage attributes (porosity and permeability) were considered to illustrate their impacts on natural gas migration during the cyclic high rate of injection and production of natural gas. The results showed that the seepage anisotropy and the natural gas front are strongly affected by the formation properties and, especially, are hindered by the low permeability sandstone layers. The difference in the lateral migration distance of natural gas in different layers can reach 110 m at the end of the injection period, with an annual injection volume of 10 8 m 3 . The migration of natural gas along the fault zone is mainly controlled by the permeability of faults, followed by fault scale, fault dip angle, and fault type. The sealing failure of caprocks in the fault zone does not occur based on the simulated gas migration distribution, showing that a very limited amount of natural gas migrates into the caprocks.

Suggested Citation

  • Shengnan Ban & Hejuan Liu & Haijun Mao & Xilin Shi & Xiaosong Qiu & Mancang Liu & Zhongshun Min & Yujia Song & Xinxing Wei, 2023. "Numerical Tracking of Natural Gas Migration in Underground Gas Storage with Multilayered Sandstone and Fault-Bearing Caprocks," Energies, MDPI, vol. 16(13), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4936-:d:1178946
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4936/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4936/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhipeng Sun & Ruizhao Yang & Feng Geng & Li Wang & Lingda Wang & Jialiang Guo, 2023. "Analyzing the Formation and Evolution of Strike-Slip Faults and Their Controlling Effects on Hydrocarbon Migration and Charging: A Case Study of Tahe Area, Tarim Basin," Energies, MDPI, vol. 16(5), pages 1-29, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4936-:d:1178946. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.