IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4688-d1170134.html
   My bibliography  Save this article

Determination of 12 Combustion Products, Flame Temperature and Laminar Burning Velocity of Saudi LPG Using Numerical Methods Coded in a MATLAB Application

Author

Listed:
  • Roberto Franco Cisneros

    (Faculty of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima 15088, Peru)

  • Freddy Jesús Rojas

    (Faculty of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima 15088, Peru)

Abstract

The characterization of a specific fuel has always been an important point for developing and designing new components or systems with the maximum efficient possible. Studying the laminar burning velocity can lay a necessary prerequisite for the accurate poststudy of the turbulent range and to understand how the combustion process takes place. The study of the combustion products from a specific reaction is a requisite for any system in order to understand the elements that are taken in the process and if it is possible to improve it. In this study, a new open code methodology was developed for the determination of combustion products, flame temperature and laminar burning velocity using numerical methods (Newton–Raphson, Taylor series and Gaussian elimination) in an application codified in MATLAB. The MATLAB application was applied for the study of Saudi LPG setting parameters such as initial temperature, pressure and equivalence ratio that are meaningful because they have a great effect on the results. In addition, simulation in Ansys Chemkin using San Diego and RedSD mechanisms was carried out. The results from the MATLAB application were compared with other experimental research and Ansys Chemkin simulation. These are presented in different plots and it is shown that: (1) For the laminar burning velocity results, the numerical method agrees with the experimental results for ratios (0.6–1.2) by other authors and the simulation in Ansys Chemkin. (2) For the highest studied equivalence ratios (1.3–1.7) the laminar burning velocity results between all the resources have more difference. (3) The combustion products calculated by the MATLAB application agree with those simulated in Ansys Chemkin except N and NO. (4) The MATLAB application gives a maximum value of 40.35 cm/s, that is greater than 35 ± 0.91, the one determined by Bader A. Alfarraj. (5) The flame temperature calculated by the MATLAB application overestimates that simulated in Ansys Chemkin but has the same behavior for all the calculated ratios. (6) The MATLAB application has also been developed for the study and analysis of other fuels.

Suggested Citation

  • Roberto Franco Cisneros & Freddy Jesús Rojas, 2023. "Determination of 12 Combustion Products, Flame Temperature and Laminar Burning Velocity of Saudi LPG Using Numerical Methods Coded in a MATLAB Application," Energies, MDPI, vol. 16(12), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4688-:d:1170134
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4688/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4688/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saad Ahmad & Ali Turab Jafry & Muteeb ul Haq & Naseem Abbas & Huma Ajab & Arif Hussain & Uzair Sajjad, 2023. "Performance and Emission Characteristics of Second-Generation Biodiesel with Oxygenated Additives," Energies, MDPI, vol. 16(13), pages 1-33, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4688-:d:1170134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.