IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4638-d1168504.html
   My bibliography  Save this article

Generating Occupancy Profiles for Building Simulations Using a Hybrid GNN and LSTM Framework

Author

Listed:
  • Yuan Xie

    (Institute for Environmental Design and Engineering, University College London, London WC1E 6BT, UK
    These authors contributed equally to this work.)

  • Spyridon Stravoravdis

    (School of Architecture, University of Liverpool, Liverpool L69 7ZN, UK
    These authors contributed equally to this work.)

Abstract

Building occupancy profiles are critical in thermal and energy simulations. However, determining an accurate occupancy profile is difficult due to its stochastic nature. In most simulations, the occupant activities are usually represented by fixed yearly schedules, which are often derived from guides and other similar sources and may not represent the simulated building accurately. Therefore, an inaccuracy in defining occupancy profiles can be a source of error in building simulations. Over the past few years machine learning has become very popular due to its ability to reveal hidden patterns and relationships between data and this makes it suitable for investigating patterns in occupancy data. This study proposes a novel hybrid model combining the Graph Neural Network and the Long Short-term Memory neural network (LSTM) to predict the occupancy of individual rooms on a typical office floor. The proposed Graph LSTM model can produce high-resolution occupancy profiles of an office that are in good agreement with the reference occupancy profiles of the same office. The reference occupancy profiles for this office were derived from an agent-based model using AnyLogic and were not used in the training of the neural network. The proposed Graph LSTM model outperformed other neural networks tested such as the Recurrent Neural Network (RNN), the Gated Recurrent Unit (GRU) and LSTM. When Graph LSTM is compared to the other neural networks tested, there is a range of improvement between 13.5 and 14.6% in the index of agreement, 38.3 and 46.8% in mean absolute error and 34.4 and 40.0% in root mean square error, when averaging the differences over the whole office.

Suggested Citation

  • Yuan Xie & Spyridon Stravoravdis, 2023. "Generating Occupancy Profiles for Building Simulations Using a Hybrid GNN and LSTM Framework," Energies, MDPI, vol. 16(12), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4638-:d:1168504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4638/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4638/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4638-:d:1168504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.