IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4041-d1145033.html
   My bibliography  Save this article

The Strike-Slip Fault Effects on the Ediacaran Carbonate Tight Reservoirs in the Central Sichuan Basin, China

Author

Listed:
  • Bing He

    (School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
    PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China)

  • Yicheng Liu

    (PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China)

  • Chen Qiu

    (School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China)

  • Yun Liu

    (PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China)

  • Chen Su

    (PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China)

  • Qingsong Tang

    (PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China)

  • Weizhen Tian

    (School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China)

  • Guanghui Wu

    (School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China)

Abstract

The largest Precambrian gas field in China has been found in the central Sichuan Basin. It is assumed as a mound-shoal microfacies-controlled dolomite reservoir. Recently, a large strike-slip fault system has been identified in the gas field that needs further study of its effect on the Ediacaran reservoirs for highly efficient exploitation of the gas field. For this contribution, we study the matrix reservoir and fractured reservoir along the strike-slip fault damage zones by the cores, FMI (Formation MicroScanner Image) and logging interpretation data, seismic description and production data. It has shown that the matrix reservoir is tight (porosity less than 3%, permeability less than 0.5 mD) that cannot support economical production by conventional exploitation technology in the deep subsurface. On the other hand, the porosity and permeability of the Ediacaran fractured reservoirs could be increased more than one time and 1–3 orders of magnitude. Except for a few localized fracture zones, the fracture elements and fractured reservoirs show a paw-law distribution with the distance to the fault core. Furthermore, the fault effect is more favorable for the increase in the porosity and permeability of the matrix reservoir in the intraplatform than in the platform margin. The overlapping of mound-shoal microfacies, fracturing and karstification could result in large-scale “sweet spots” of the fractured reservoirs in the fault damage zone. The “sweet spot” of fractured reservoir in the fault damage zone is a new favorable exploitation target in the deep central Sichuan Basin.

Suggested Citation

  • Bing He & Yicheng Liu & Chen Qiu & Yun Liu & Chen Su & Qingsong Tang & Weizhen Tian & Guanghui Wu, 2023. "The Strike-Slip Fault Effects on the Ediacaran Carbonate Tight Reservoirs in the Central Sichuan Basin, China," Energies, MDPI, vol. 16(10), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4041-:d:1145033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4041/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4041/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao He & Guian Guo & Qingsong Tang & Guanghui Wu & Wei Xu & Bingshan Ma & Tianjun Huang & Weizhen Tian, 2022. "The Advances and Challenges of the Ediacaran Fractured Reservoir Development in the Central Sichuan Basin, China," Energies, MDPI, vol. 15(21), pages 1-14, November.
    2. Yongfeng Zhu & Yintao Zhang & Xingxing Zhao & Zhou Xie & Guanghui Wu & Ting Li & Shuai Yang & Pengfei Kang, 2022. "The Fault Effects on the Oil Migration in the Ultra-Deep Fuman Oilfield of the Tarim Basin, NW China," Energies, MDPI, vol. 15(16), pages 1-15, August.
    3. Qinghua Wang & Yintao Zhang & Zhou Xie & Yawen Zhao & Can Zhang & Chong Sun & Guanghui Wu, 2022. "The Advancement and Challenges of Seismic Techniques for Ultra-Deep Carbonate Reservoir Exploitation in the Tarim Basin of Northwestern China," Energies, MDPI, vol. 15(20), pages 1-13, October.
    4. Yawen Zhao & Guanghui Wu & Yintao Zhang & Nicola Scarselli & Wei Yan & Chong Sun & Jianfa Han, 2023. "The Strike-Slip Fault Effects on Tight Ordovician Reef-Shoal Reservoirs in the Central Tarim Basin (NW China)," Energies, MDPI, vol. 16(6), pages 1-14, March.
    5. Guoping Liu & Lianbo Zeng & Chunyuan Han & Mehdi Ostadhassan & Wenya Lyu & Qiqi Wang & Jiangwei Zhu & Fengxiang Hou, 2020. "Natural Fractures in Carbonate Basement Reservoirs of the Jizhong Sub-Basin, Bohai Bay Basin, China: Key Aspects Favoring Oil Production," Energies, MDPI, vol. 13(18), pages 1-23, September.
    6. Long Wen & Qi Ran & Weizhen Tian & Han Liang & Yuan Zhong & Yu Zou & Chen Su & Guanghui Wu, 2022. "Strike-Slip Fault Effects on Diversity of the Ediacaran Mound-Shoal Distribution in the Central Sichuan Intracratonic Basin, China," Energies, MDPI, vol. 15(16), pages 1-12, August.
    7. Fuxiao Shen & Shiyin Li & Xingliang Deng & Zhiliang Liu & Ping Guo & Guanghui Wu, 2022. "Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin," Energies, MDPI, vol. 15(11), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao He & Guian Guo & Qingsong Tang & Guanghui Wu & Wei Xu & Bingshan Ma & Tianjun Huang & Weizhen Tian, 2022. "The Advances and Challenges of the Ediacaran Fractured Reservoir Development in the Central Sichuan Basin, China," Energies, MDPI, vol. 15(21), pages 1-14, November.
    2. Lixin Chen & Zhenxue Jiang & Chong Sun & Bingshan Ma & Zhou Su & Xiaoguo Wan & Jianfa Han & Guanghui Wu, 2023. "An Overview of the Differential Carbonate Reservoir Characteristic and Exploitation Challenge in the Tarim Basin (NW China)," Energies, MDPI, vol. 16(15), pages 1-14, July.
    3. Yawen Zhao & Guanghui Wu & Yintao Zhang & Nicola Scarselli & Wei Yan & Chong Sun & Jianfa Han, 2023. "The Strike-Slip Fault Effects on Tight Ordovician Reef-Shoal Reservoirs in the Central Tarim Basin (NW China)," Energies, MDPI, vol. 16(6), pages 1-14, March.
    4. Xin Luo & Siqi Chen & Jiawei Liu & Fei Li & Liang Feng & Siyao Li & Yonghong Wu & Guanghui Wu & Bin Luo, 2023. "The Fractured Permian Reservoir and Its Significance in the Gas Exploitation in the Sichuan Basin, China," Energies, MDPI, vol. 16(4), pages 1-13, February.
    5. Zhipeng Sun & Ruizhao Yang & Feng Geng & Li Wang & Lingda Wang & Jialiang Guo, 2023. "Analyzing the Formation and Evolution of Strike-Slip Faults and Their Controlling Effects on Hydrocarbon Migration and Charging: A Case Study of Tahe Area, Tarim Basin," Energies, MDPI, vol. 16(5), pages 1-29, March.
    6. Qinghua Wang & Yintao Zhang & Zhou Xie & Yawen Zhao & Can Zhang & Chong Sun & Guanghui Wu, 2022. "The Advancement and Challenges of Seismic Techniques for Ultra-Deep Carbonate Reservoir Exploitation in the Tarim Basin of Northwestern China," Energies, MDPI, vol. 15(20), pages 1-13, October.
    7. Reza Rezaee, 2022. "Editorial on Special Issues of Development of Unconventional Reservoirs," Energies, MDPI, vol. 15(7), pages 1-9, April.
    8. Rujun Wang & Jianping Yang & Lunjie Chang & Yintao Zhang & Chong Sun & Xiaoguo Wan & Guanghui Wu & Bingchen Bai, 2022. "3D Modeling of Fracture-Cave Reservoir from a Strike-Slip Fault-Controlled Carbonate Oilfield in Northwestern China," Energies, MDPI, vol. 15(17), pages 1-14, September.
    9. Qingsong Tang & Shuhang Tang & Bing Luo & Xin Luo & Liang Feng & Siyao Li & Guanghui Wu, 2022. "Seismic Description of Deep Strike-Slip Fault Damage Zone by Steerable Pyramid Method in the Sichuan Basin, China," Energies, MDPI, vol. 15(21), pages 1-13, October.
    10. Shibin Tang & Shun Ding & Jiaming Li & Chun Zhu & Leyu Cao, 2023. "An Improved Microseismic Signal Denoising Method of Rock Failure for Deeply Buried Energy Exploration," Energies, MDPI, vol. 16(5), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4041-:d:1145033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.