IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p247-d1015282.html
   My bibliography  Save this article

Cobalt Nanocluster-Doped Carbon Micro-Spheres with Multilevel Porous Structure for High-Performance Lithium-Sulfur Batteries

Author

Listed:
  • Wenming Song

    (Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
    These authors contributed equally to this work.)

  • Changmeng Xu

    (Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
    These authors contributed equally to this work.)

  • Mai Li

    (Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China)

  • Zhi Cheng

    (Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China)

  • Yunjie Liu

    (Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China)

  • Peng Wang

    (Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China)

  • Zhiming Liu

    (Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China)

Abstract

Lithium-Sulfur batteries (Li-S batteries) have gained great interest in next-generation energy storage systems due to their high energy density and low-cost sulfur cathodes. There is, however, a serious obstacle in the commercial application of Li-S batteries due to the poor kinetics of the redox process at the sulfur cathode and the “shuttle effect” caused by lithium polysulfide (LiPSs). Herein, we report the synthesis of a sulfur cathode host material that can drastically inhibit the “shuttle effect” and catalyze the conversion of LiPSs by a simple electrostatic spray technique, namely, cobalt (Co) nanoclusters doped with N-containing porous carbon spheres (Co/N-PCSs). The results show that Co/N-PCSs has catalytic activity for the transformation of liquid LiPSs to solid Li 2 S and alleviates the notorious “shuttle effect.” This new sulfur cathode exhibits stable running for 300 cycles accompanied by a capacity of 650 mAh g −1 at a current density of 1 C, a capacity fading rate of 0.051% per cycle, and a Coulombic efficiency maintained at close to 100%. The results demonstrate that Co/N-PCSs offers the possibility of practical applications for high-performance Li-S batteries.

Suggested Citation

  • Wenming Song & Changmeng Xu & Mai Li & Zhi Cheng & Yunjie Liu & Peng Wang & Zhiming Liu, 2022. "Cobalt Nanocluster-Doped Carbon Micro-Spheres with Multilevel Porous Structure for High-Performance Lithium-Sulfur Batteries," Energies, MDPI, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:247-:d:1015282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/247/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:247-:d:1015282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.