IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p130-d1012218.html
   My bibliography  Save this article

Uncertainty and Sensitivity Analysis of Hydrogen Source Term under Severe Accident of Marine Reactor

Author

Listed:
  • Yuqing Chen

    (College of Nuclear Science and Technology, Naval University of Engineering, Wuhan 430033, China)

  • Haifeng Wang

    (College of Nuclear Science and Technology, Naval University of Engineering, Wuhan 430033, China)

Abstract

In order to explore the hydrogen source term characteristics under severe accidents of marine pressurized water reactors (PWR) and effectively assess the hydrogen risk, the best estimation program SCDAP/RELAP5/MOD3.2 is used to establish the marine reactor severe accident analysis model. Based on the Latin Hypercube sampling (LHS) method and the Wilks sampling theory, a set of methods for the uncertainty analysis of severe accidents is developed. This method can be applied to the uncertainty and sensitivity analysis of different target parameters. The phenomenon identification and ranking table (PIRT) under the severe accident induced by the break are established, and 14 uncertain parameters are selected as input variables. The established PIRT fills the gap in the uncertainty and sensitivity analysis of severe accidents of marine reactors and provides a reference for subsequent research. The quantitative uncertainty analysis of the calculation results is carried out, and the uncertainty range of hydrogen production is defined. The Spearman correlation coefficient is used to evaluate the sensitivity of input parameters, and the sensitivity of each parameter to hydrogen production is obtained. The results show that under the severe accident caused by the medium equivalent diameter break, the uncertainty range of hydrogen production in the zirconium–water reaction in the pressure vessel is 20.14 kg~22.19 kg with 95% confidence, and the fuel cladding thickness has a significant positive correlation on the hydrogen production.

Suggested Citation

  • Yuqing Chen & Haifeng Wang, 2022. "Uncertainty and Sensitivity Analysis of Hydrogen Source Term under Severe Accident of Marine Reactor," Energies, MDPI, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:130-:d:1012218
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/130/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:130-:d:1012218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.