IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3032-d798528.html
   My bibliography  Save this article

The Nonuniform Distribution of Stylolite in Bioclastic Limestones and Its Influence on Reservoir Petro-Physical Properties—A Case Study of the Mishrif Formation from the Ah Oilfield

Author

Listed:
  • Jiacheng Xu

    (Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China)

  • Ya Deng

    (Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China)

  • Meiyan Fu

    (Energy College, Chengdu University of Technology, Chengdu 610059, China)

  • Rui Guo

    (Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China)

  • Pei Chen

    (Energy College, Chengdu University of Technology, Chengdu 610059, China)

  • Guanghui Duan

    (Energy College, Chengdu University of Technology, Chengdu 610059, China)

  • Ruicheng Ma

    (Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China)

Abstract

The effect of stylolite caused by the pressure dissolution process on the reservoir petro-physical properties is still controversial. This study aims to reveal the effect of stylolite on the porosity and permeability of packstone and wackestone in the Mishrif Formation from the Ah oilfield in the Middle East. Based on the observation of thin sections and cores, X-ray diffraction analysis and porosity and permeability measurement, the lithofacies, diagenesis and patterns of stylolites have been investigated. There are six lithofacies in the Mi4 member, including bivalve green algae packstone, green algae packstone, pelletoid green algae packstone, echinoderm packstone, rudist packstone, planktonic foraminifera wackestone and bioclastic wackestone. The mechanical compaction and pressure dissolution could be observed in these lithofacies, with the development of dissolution seams and stylolites. The density of stylolite has a relationship with the lithofacies and early cementation. The boundary between the echinoderm packstone and the green algae packstone mostly developed as stylolites. There are four types of stylolite on the cores. Type A is the wave-like stylolite developed at the boundary between the echinoderm packstones and green algae packstones. Type B is the zigzag stylolite with high amplitude in the green algae packstones. Type C is the stylolites with low amplitude in the bioclastic wackestones. Type D is the high-angle stylolite, which is oblique to the bedding plane. The permeability of reservoir rocks could be improved by dissolution along the type B stylolite, while the type A and type C stylolite have little effect on permeability. The permeability of green algae packstone and echinoderm packstone will decrease with the development of stylolites. The porosity and permeability of bivalve green algae packstone will decrease after stylolitization, resulting from the relatively high density of stylolite. The physical properties of bioclastic wackestone could be improved by the bioturbation and formation of stylolite. According to the analysis of production performance in the same lithofacies, the occurrence of stylolites could result in the development of oil baffles. This study could be extended to evaluate the effect of stylolite in carbonate reservoir rocks.

Suggested Citation

  • Jiacheng Xu & Ya Deng & Meiyan Fu & Rui Guo & Pei Chen & Guanghui Duan & Ruicheng Ma, 2022. "The Nonuniform Distribution of Stylolite in Bioclastic Limestones and Its Influence on Reservoir Petro-Physical Properties—A Case Study of the Mishrif Formation from the Ah Oilfield," Energies, MDPI, vol. 15(9), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3032-:d:798528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3032/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3032-:d:798528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.