IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2766-d790324.html
   My bibliography  Save this article

Experimental Analysis of Ultra-High-Frequency Signal Propagation Paths in Power Transformers

Author

Listed:
  • Chandra Prakash Beura

    (Institute of Power Transmission and High Voltage Technology (IEH), University of Stuttgart, 70569 Stuttgart, Germany)

  • Michael Beltle

    (Institute of Power Transmission and High Voltage Technology (IEH), University of Stuttgart, 70569 Stuttgart, Germany)

  • Philipp Wenger

    (Institute of Power Transmission and High Voltage Technology (IEH), University of Stuttgart, 70569 Stuttgart, Germany)

  • Stefan Tenbohlen

    (Institute of Power Transmission and High Voltage Technology (IEH), University of Stuttgart, 70569 Stuttgart, Germany)

Abstract

Ultra-high-frequency (UHF) partial discharge (PD) monitoring is gaining popularity because of its advantages over electrical methods for onsite/online applications. One such advantage is the possibility of three-dimensional PD source localization. However, it is necessary to understand the signal propagation and attenuation characteristics in transformers to improve localization. Since transformers are available in a wide range of ratings and geometric sizes, it is necessary to ascertain the similarities and differences in UHF signal characteristics across the different designs. Therefore, in this contribution, the signal attenuation and propagation characteristics of two 300 MVA transformers are analyzed and compared based on experiments. The two transformers have the same rating but different internal structures. It should be noted that the oil is drained out of the transformers for these tests. Additionally, a simulation model of one of the transformers is built and validated based on the experimental results. Subsequently, a simulation model is used to analyze the electromagnetic wave propagation inside the tank. Analysis of the experimental data shows that the distance-dependent signal attenuation characteristics are similar in the case of both transformers and can be well represented by hyperbolic equations, thus indicating that transformers with the same rating have similar attenuation characteristics even if they have different internal structures.

Suggested Citation

  • Chandra Prakash Beura & Michael Beltle & Philipp Wenger & Stefan Tenbohlen, 2022. "Experimental Analysis of Ultra-High-Frequency Signal Propagation Paths in Power Transformers," Energies, MDPI, vol. 15(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2766-:d:790324
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2766/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Siegel & Sebastian Coenen & Michael Beltle & Stefan Tenbohlen & Marc Weber & Pascal Fehlmann & Stefan M. Hoek & Ulrich Kempf & Robert Schwarz & Thomas Linn & Jitka Fuhr, 2019. "Calibration Proposal for UHF Partial Discharge Measurements at Power Transformers," Energies, MDPI, vol. 12(16), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Tenbohlen & Chandra Prakash Beura & Wojciech Sikorski & Ricardo Albarracín Sánchez & Bruno Albuquerque de Castro & Michael Beltle & Pascal Fehlmann & Martin Judd & Falk Werner & Martin Siegel, 2023. "Frequency Range of UHF PD Measurements in Power Transformers," Energies, MDPI, vol. 16(3), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Kozioł & Łukasz Nagi & Michał Kunicki & Ireneusz Urbaniec, 2019. "Radiation in the Optical and UHF Range Emitted by Partial Discharges," Energies, MDPI, vol. 12(22), pages 1-16, November.
    2. Chandra Prakash Beura & Michael Beltle & Stefan Tenbohlen & Martin Siegel, 2019. "Quantitative Analysis of the Sensitivity of UHF Sensor Positions on a 420 kV Power Transformer Based on Electromagnetic Simulation," Energies, MDPI, vol. 13(1), pages 1-17, December.
    3. Michał Kunicki & Sebastian Borucki & Andrzej Cichoń & Jerzy Frymus, 2019. "Modeling of the Winding Hot-Spot Temperature in Power Transformers: Case Study of the Low-Loaded Fleet," Energies, MDPI, vol. 12(18), pages 1-17, September.
    4. Benhui Lai & Shichang Yang & Heng Zhang & Yiyi Zhang & Xianhao Fan & Jiefeng Liu, 2020. "Performance Assessment of Oil-Immersed Cellulose Insulator Materials Using Time–Domain Spectroscopy under Varying Temperature and Humidity Conditions," Energies, MDPI, vol. 13(17), pages 1-14, August.
    5. Vo-Nguyen Tuyet-Doan & Tien-Tung Nguyen & Minh-Tuan Nguyen & Jong-Ho Lee & Yong-Hwa Kim, 2020. "Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 13(8), pages 1-16, April.
    6. Shaorui Qin & Siyuan Zhou & Taiyun Zhu & Shenglong Zhu & Jianlin Li & Zheran Zheng & Shuo Qin & Cheng Pan & Ju Tang, 2021. "Sinusoidal Noise Removal in PD Measurement Based on Synchrosqueezing Transform and Singular Spectrum Analysis," Energies, MDPI, vol. 14(23), pages 1-22, November.
    7. Daria Wotzka & Wojciech Sikorski & Cyprian Szymczak, 2022. "Investigating the Capability of PD-Type Recognition Based on UHF Signals Recorded with Different Antennas Using Supervised Machine Learning," Energies, MDPI, vol. 15(9), pages 1-20, April.
    8. Stefan Tenbohlen & Chandra Prakash Beura & Wojciech Sikorski & Ricardo Albarracín Sánchez & Bruno Albuquerque de Castro & Michael Beltle & Pascal Fehlmann & Martin Judd & Falk Werner & Martin Siegel, 2023. "Frequency Range of UHF PD Measurements in Power Transformers," Energies, MDPI, vol. 16(3), pages 1-21, January.
    9. Chengjie Zhang & Yuan Li & Senhong Yang & Ranran Li, 2023. "Study on Development Characteristics of Partial Discharge in Oil-Pressboard Insulation under Constant DC Voltage," Energies, MDPI, vol. 16(10), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2766-:d:790324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.