IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1431-d750569.html
   My bibliography  Save this article

The Hydrodynamics of Translational−Rotational Motion of Incompressible Gas Flow within the Working Space of a Vortex Heat Generator

Author

Listed:
  • Valeriy Nikolsky

    (Department of Energetic, Ukrainian State University of Chemical Technology, 49000 Dnipro, Ukraine)

  • Roman Dychkovskyi

    (Department of Development & Research, Dnipro University of Technology, 49027 Dnipro, Ukraine)

  • Edgar Cáceres Cabana

    (Scientific Research Institute of the Center of Renewable Energy and Energy Efficiency, Universidad Nacional de San Agustin de Arequipa, Arequipa PE-04000, Peru)

  • Natalia Howaniec

    (Department of Energy Saving and Air Protection, Central Mining Institute, Plac Gwarkow 1, 40-166 Katowice, Poland)

  • Bartłomiej Jura

    (Department of Mining Aerology, Central Mining Institute, Plac Gwarkow 1, 40-166 Katowice, Poland)

  • Katarzyna Widera

    (Department of Economics, Finance, Regional and International Research, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland)

  • Adam Smoliński

    (Central Mining Institute, Plac Gwarkow 1, 40-166 Katowice, Poland)

Abstract

The paper presents the results of analytical and experimental studies of the hydrodynamics of the translational−rotational motion of incompressible gas flow within a working space of a variable-geometry vortex heat generator. The terminal velocity and pressure have been identified analytically. The effect of vortex generation on the ratio of the parameters has been analyzed. A mathematical model has been developed with a simplified design scheme that simulates the movement inside a vortex channel with fixed elements. On the basis of mathematical modelling, the influence of the apparatus-constructive (AC) design of the working space of a vortex heat generator on the generation of vortices inside the apparatus has been analyzed. The influence of the main geometric and hydrodynamic parameters of the device on the indicators of its energy efficiency has been investigated. The obtained models show the critical regions where the most intense cavitation zones are possible. An analysis of the hydrodynamics of the incompressible gas motion within the working space of the newly designed vortex heat generator with variable geometry has helped define both the terminal velocity and pressure. In addition, the effect of the facility geometry on the generation of vortices favoring cavitation was determined. The model studies have been carried out in terms of liquid loading changes in the 0.001–0.01 m 3 /s range. The changes in a velocity field within a working channel have been analyzed for the channel geometry, where a cone angle γ is 0° to 25°, with 130, 70, and 40 mm widths for the working channel. It has been identified that a sufficient axial symmetry of the heat carrier along a vortex accelerator enables the heat carrier inlet through a turbulizing nozzle. The dependence of the nozzle area, the effect on the efficiency of the vortex heat generator angle of attack of the vortex accelerator, and the ratio of the length and diameter of the vortex zone of the heat generator to its energy efficiency in general have been defined experimentally. These studies could be instrumental in the design of vortex heat generators whose geometry corresponds to the current requirements concerning energy efficiency. It has been found that the geometry of the vortex accelerator improves the operation of the heat generator by 35% in comparison with similar available designs.

Suggested Citation

  • Valeriy Nikolsky & Roman Dychkovskyi & Edgar Cáceres Cabana & Natalia Howaniec & Bartłomiej Jura & Katarzyna Widera & Adam Smoliński, 2022. "The Hydrodynamics of Translational−Rotational Motion of Incompressible Gas Flow within the Working Space of a Vortex Heat Generator," Energies, MDPI, vol. 15(4), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1431-:d:750569
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valeriy Nikolsky & Ivan Kuzyayev & Roman Dychkovskyi & Oleksandr Alieksandrov & Vadim Yaris & Serhiy Ptitsyn & Ludmila Tikhaya & Natalia Howaniec & Andrzej Bak & Tomasz Siudyga & Bartłomiej Jura & Edg, 2020. "A Study of Heat Exchange Processes within the Channels of Disk Pulse Devices," Energies, MDPI, vol. 13(13), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Smoliński & Andrzej Bąk, 2022. "Clean Coal Technologies as an Effective Way in Global Carbon Dioxide Mitigation," Energies, MDPI, vol. 15(16), pages 1-4, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1431-:d:750569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.