IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p859-d733140.html
   My bibliography  Save this article

Effect of the Intercalation and Dispersion of Organoclays on Energy Demand in the Extrusion of Recycled HDPE/PP Nanocomposites

Author

Listed:
  • Andres Rigail-Cedeño

    (Facultad de Ingeniería en Mecánica y Ciencias de la Producción, ESPOL Polytechnic University Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo Km 30.5 vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador
    Laboratorio de Procesamiento de Plásticos, ESPOL Polytechnic University Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo Km 30.5 vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador)

  • Javier Vera-Sorroche

    (Centre Européen des Textiles Innovants (CETI), 59200 Tourcoing, France)

  • Gladys García-Mejía

    (Facultad de Ingeniería en Mecánica y Ciencias de la Producción, ESPOL Polytechnic University Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo Km 30.5 vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador
    Laboratorio de Procesamiento de Plásticos, ESPOL Polytechnic University Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo Km 30.5 vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador)

  • Raul Intriago

    (Facultad de Ingenieria en Electricidad y computación, ESPOL Polytechnic University Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo Km 30.5 vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador)

Abstract

Few studies have drawn on any systematic research into the energy demand to produce polymer-based nanocomposites. Regarding the problem, it is well-known that single screw extrusion is an energy-intensive process, so the incorporation of energy meters must be considered to examine the energy efficiency of the process. In this study, the effect of a nanoclay addition on the energy demand of the extrusion process was examined by extruding recycled high-density polyethylene (rHDPE) and recycled polypropylene (rPP) with a gradual compression screw with both dispersive and distributive mixers. The rHDPE/rPP was modified by adding commercial organoclay (OMMT) (3 wt%) and olefin block copolymer (OBC) (5 wt%) as compatibilizers. The energy consumption was measured on the total energy of the extruder machine. Mass throughput (MT) and specific energy consumption (SEC) were obtained at different screw speeds (10, 20, 30, 40, 50 RPM). The SEC of OMMT and OMMT/OBC nanocomposites was 25–50% lower than rHDPE/rPP, especially at higher throughputs. X-ray diffraction (XRD) and scanning electron microscope (SEM) illustrated the degree of intercalation and dispersion of the organoclay at different screw speeds. Better organoclay intercalation and dispersion were found at lower temperatures. Rheological curves showed a decrease in the viscosity at extrusion rates of nanocomposite mixtures. Melt temperature measured at die exit was reduced in the presence of organoclay over the screw speeds studied. This work suggests that the processing of rHDPE/rPP based nanocomposites can result in minor costs when processing conditions are carefully selected.

Suggested Citation

  • Andres Rigail-Cedeño & Javier Vera-Sorroche & Gladys García-Mejía & Raul Intriago, 2022. "Effect of the Intercalation and Dispersion of Organoclays on Energy Demand in the Extrusion of Recycled HDPE/PP Nanocomposites," Energies, MDPI, vol. 15(3), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:859-:d:733140
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/859/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:859-:d:733140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.