IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9487-d1003765.html
   My bibliography  Save this article

Unveiling the Effects of Solvent Polarity within Graphene Based Electric Double-Layer Capacitors

Author

Listed:
  • Chenxuan Xu

    (Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China)

  • Jingdong Zhu

    (Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China)

  • Dedi Li

    (Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China)

  • Xu Qian

    (Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China)

  • Gang Chen

    (Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China)

  • Huachao Yang

    (State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

Solvents have been considered to show a profound influence on the charge storage of electric double-layer capacitors (EDLCs). However, the corresponding mechanisms remain elusive and controversial. In this work, the influences of solvent dipole moment on the EDL structures, kinetic properties, and charging mechanisms of graphene-based EDLCs are investigated with atomistic simulations. Specifically, electrolyte structuring is conspicuously modulated by solvents, where a sharp increment of capacitance (~325.6%) and kinetics (~10-fold) is documented upon the slight descent of polarity by ~33.0%. Unusually, such an impressive enhancement is primarily attributed to the suppressed interfacial electric fields stimulated by strong-polarity solvents in the proximity of electrodes, which goes beyond the previously observed issues that stemmed from the competitive interplays between ions and solvents. Moreover, a distinctive polarity-dependent charging mechanism (i.e., from pure counterion adsorption to coion desorption) is identified, which for the first time delineates the pivotal role of solvent polarity in manipulating the charge storage evolutions. The as-obtained findings highlight that exploiting the solvent effects could be a promising avenue to further advance the performances of EDLCs.

Suggested Citation

  • Chenxuan Xu & Jingdong Zhu & Dedi Li & Xu Qian & Gang Chen & Huachao Yang, 2022. "Unveiling the Effects of Solvent Polarity within Graphene Based Electric Double-Layer Capacitors," Energies, MDPI, vol. 15(24), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9487-:d:1003765
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9487/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9487/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simon Fleischmann & Yuan Zhang & Xuepeng Wang & Peter T. Cummings & Jianzhong Wu & Patrice Simon & Yury Gogotsi & Volker Presser & Veronica Augustyn, 2022. "Continuous transition from double-layer to Faradaic charge storage in confined electrolytes," Nature Energy, Nature, vol. 7(3), pages 222-228, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siraprapha Deebansok & Jie Deng & Etienne Calvez & Yachao Zhu & Olivier Crosnier & Thierry Brousse & Olivier Fontaine, 2024. "Capacitive tendency concept alongside supervised machine-learning toward classifying electrochemical behavior of battery and pseudocapacitor materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Qiulong Wei & Xiaoqing Chang & Danielle Butts & Ryan DeBlock & Kun Lan & Junbin Li & Dongliang Chao & Dong-Liang Peng & Bruce Dunn, 2023. "Surface-redox sodium-ion storage in anatase titanium oxide," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Mailis Lounasvuori & Yangyunli Sun & Tyler S. Mathis & Ljiljana Puskar & Ulrich Schade & De-En Jiang & Yury Gogotsi & Tristan Petit, 2023. "Vibrational signature of hydrated protons confined in MXene interlayers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Kangkang Ge & Hui Shao & Encarnacion Raymundo-PiƱero & Pierre-Louis Taberna & Patrice Simon, 2024. "Cation desolvation-induced capacitance enhancement in reduced graphene oxide (rGO)," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Tao Wang & Runtong Pan & Murillo L. Martins & Jinlei Cui & Zhennan Huang & Bishnu P. Thapaliya & Chi-Linh Do-Thanh & Musen Zhou & Juntian Fan & Zhenzhen Yang & Miaofang Chi & Takeshi Kobayashi & Jianz, 2023. "Machine-learning-assisted material discovery of oxygen-rich highly porous carbon active materials for aqueous supercapacitors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9487-:d:1003765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.