IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8612-d975325.html
   My bibliography  Save this article

Comparative Reliability Assessment of Hybrid Si/SiC and Conventional Si Power Module Based PV Inverter Considering Mission Profile of India and Denmark Locations

Author

Listed:
  • Sainadh Singh Kshatri

    (Department of Electrical and Electronics Engineering, B V Raju Institute of Technology, Narsapur 502313, Telangana, India)

  • Javed Dhillon

    (School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara 144411, Punjab, India)

  • Sachin Mishra

    (School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara 144411, Punjab, India)

  • Ali Torabi Haghighi

    (Water, Energy, and Environmental Engineering Research Unit, University of Oulu, P.O. Box 4300, FIN-90014 Oulu, Finland)

  • Julian David Hunt

    (International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria)

  • Epari Ritesh Patro

    (Water, Energy, and Environmental Engineering Research Unit, University of Oulu, P.O. Box 4300, FIN-90014 Oulu, Finland)

Abstract

Energy harnessing from renewable energy sources has become more flexible with power electronic technologies. Recent advancements in power electronic technologies achieve converter efficiency higher than 98%. Today, reliable power electronic devices are needed to design a PV-based energy converter (inverter) to reduce the risk of failure and maintenance costs during operation. Wide-bandgap SiC devices are becoming more common in power electronic converters. These devices are designed to reduce switching loss and improve the efficiency of the system. Nevertheless, the cost of SiC devices is a major concern. Hence, to improve the reliability of the PV inverter while considering the economic aspects, this paper develops a highly reliable PV inverter with a hybrid Si/SiC power module that consists of a Si-IGBT with a SiC anti-parallel diode. A test case of a 3 kW PV inverter is considered for reliability analysis. The loading of the PV inverter is done under uncertain environmental conditions by considering the yearly Mission Profile (MP) data related to Ambient Temperature (AT) and Solar Irradiance (SI) at the India and Denmark locations. The effectiveness of the proposed hybrid Si/SiC power module is tested by comparing it with a conventional IGBT power module. The results showcase the marked improvement in PV inverter reliability with the proposed hybrid power module.

Suggested Citation

  • Sainadh Singh Kshatri & Javed Dhillon & Sachin Mishra & Ali Torabi Haghighi & Julian David Hunt & Epari Ritesh Patro, 2022. "Comparative Reliability Assessment of Hybrid Si/SiC and Conventional Si Power Module Based PV Inverter Considering Mission Profile of India and Denmark Locations," Energies, MDPI, vol. 15(22), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8612-:d:975325
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhijian Feng & Xing Zhang & Jianing Wang & Shaolin Yu, 2020. "A High-Efficiency Three-Level ANPC Inverter Based on Hybrid SiC and Si Devices," Energies, MDPI, vol. 13(5), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerardo Humberto Valencia-Rivera & Ivan Amaya & Jorge M. Cruz-Duarte & José Carlos Ortíz-Bayliss & Juan Gabriel Avina-Cervantes, 2021. "Hybrid Controller Based on LQR Applied to Interleaved Boost Converter and Microgrids under Power Quality Events," Energies, MDPI, vol. 14(21), pages 1-31, October.
    2. Sergio Toledo & Edgar Maqueda & Marco Rivera & Raúl Gregor & Pat Wheeler & Carlos Romero, 2020. "Improved Predictive Control in Multi-Modular Matrix Converter for Six-Phase Generation Systems," Energies, MDPI, vol. 13(10), pages 1-13, May.
    3. Rafał Kopacz & Michał Harasimczuk & Bartosz Lasek & Rafał Miśkiewicz & Jacek Rąbkowski, 2021. "All-SiC ANPC Submodule for an Advanced 1.5 kV EV Charging System under Various Modulation Methods," Energies, MDPI, vol. 14(17), pages 1-16, September.
    4. Joanna Patrzyk & Damian Bisewski & Janusz Zarębski, 2020. "Electrothermal Model of SiC Power BJT," Energies, MDPI, vol. 13(10), pages 1-9, May.
    5. Ersan Kabalci & Aydin Boyar, 2022. "Highly Efficient Interleaved Solar Converter Controlled with Extended Kalman Filter MPPT," Energies, MDPI, vol. 15(21), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8612-:d:975325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.