IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8513-d972603.html
   My bibliography  Save this article

Fluidic Thrust, Propulsion, Vector Control of Supersonic Jets by Flow Entrainment and the Coanda Effect

Author

Listed:
  • Toshihiko Shakouchi

    (Graduate School of Engineering, Mie University, Tsu 514-8507, Japan)

  • Shunsuke Fukushima

    (Graduate School of Engineering, Mie University, Tsu 514-8507, Japan)

Abstract

Thrust, propulsion, vector control of supersonic jets has been applied to jet and rocket engines, ejectors, and other many devices. In general, there are two approaches to this type of control, namely mechanical moving systems and fluidic thrust vector control systems without moving parts, with mechanical moving systems being the most common. However, generally speaking, these systems are very complicated, and more simple methods and devices are desired. In this study, an extremely simple method for the thrust vector control of a supersonic jet by a fluidic Coanda nozzle (FC-nozzle) using the entrainment of the surrounding fluid and Coanda effect is newly proposed. The FC-nozzle consists of a pipe nozzle (Pi-nozzle), spacer, and linearly expanded Coanda nozzle (Co-nozzle) with eight suction pipes (Su-pipes) installed to surround the jet from the Pi-nozzle. The jet from the Pi-nozzle flows straight with the entrainment flow of the surrounding fluid. When some Su-pipes are closed, the pressure between the jet and Co-nozzle wall decreases, and subsequently, the jet deflects to the closed side of the Su-pipe and reattaches to the wall by the Coanda effect. The flow characteristics and deflection characteristics of the supersonic jet from the FC-nozzle are examined by the visualized flow pattern using the Schlieren method and measurements of the velocity distribution. As a result, it is shown that by changing the number of Su-pipes and the locations at which they are closed, the deflection angle and circumferential position of the jet from the Pi-nozzle can be easily controlled.

Suggested Citation

  • Toshihiko Shakouchi & Shunsuke Fukushima, 2022. "Fluidic Thrust, Propulsion, Vector Control of Supersonic Jets by Flow Entrainment and the Coanda Effect," Energies, MDPI, vol. 15(22), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8513-:d:972603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8513/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8513-:d:972603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.