IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8081-d958771.html
   My bibliography  Save this article

Preparation of N-, O-, and S-Tri-Doped Biochar through One-Pot Pyrolysis of Poplar and Urea Formaldehyde and Its Enhanced Removal of Tetracycline from Wastewater

Author

Listed:
  • Wenran Gao

    (Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Zixiang Lin

    (Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Shanshan Yan

    (Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Yaxuan Gao

    (Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Hong Zhang

    (Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Xun Hu

    (School of Material Science and Engineering, University of Jinan, Jinan 250022, China)

  • Hongqi Sun

    (School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia)

  • Shu Zhang

    (Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

Abstract

In this study, biochar was prepared via hybrid doping of N, O, and S by applying one-pot pyrolysis of poplar wood and S-containing urea formaldehyde at 900 °C. Different doping ratios were adopted, and the contents of O, N, and S were in the ranges of 2.78–5.56%, 2.16–4.92%, and 1.42–4.98%, respectively. This hybrid doping significantly enhanced the efficiency of the removal of tetracycline (40 mg/L) from wastewater to 71.84% in comparison with that attained by using normal poplar biochar (29.45%). The adsorption kinetics and isotherms indicated that the adsorption process was favorable and was dominated by chemisorption instead of physisorption; the dominant adsorption process may be justified by the existence of abundant functional groups. The adsorption capacity was barely related to the surface area (R 2 = 0.478), while it was closely related to the concentration of graphitic N (R 2 = 0.985) because graphitic N enhanced the π–π interactions. The adsorption capacity was also highly related to the proportion of oxidized N and oxidized S owing to hydrogen bonding, which may have overlapped with the contribution of O-containing functional groups. This study presents a simple hybrid doping method for biochar modification and provides fundamental insights into the specific effects of O-, N- and S-containing functional groups on the performance of biochar for tetracycline removal.

Suggested Citation

  • Wenran Gao & Zixiang Lin & Shanshan Yan & Yaxuan Gao & Hong Zhang & Xun Hu & Hongqi Sun & Shu Zhang, 2022. "Preparation of N-, O-, and S-Tri-Doped Biochar through One-Pot Pyrolysis of Poplar and Urea Formaldehyde and Its Enhanced Removal of Tetracycline from Wastewater," Energies, MDPI, vol. 15(21), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8081-:d:958771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8081/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8081-:d:958771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.