IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i1p298-d716451.html
   My bibliography  Save this article

Influence of Fluid Compressibility and Movements of the Swash Plate Axis of Rotation on the Volumetric Efficiency of Axial Piston Pumps

Author

Listed:
  • Paweł Załuski

    (Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, 80-233 Gdansk, Poland)

Abstract

This paper describes the design of a swash plate axial piston pump and the theoretical models describing the bulk modulus of aerated and non-aerated fluids. The dead space volume is defined and the influence of this volume and the fluid compressibility on the volumetric efficiency of the pump is considered. A displacement of the swash plate rotation axis is proposed to reduce the dead space volume for small swash plate swing angles. A prototype design of a pump with a displaced axis of rotation of a swash plate with two directions of delivery is presented, in which the capacity is changed by means of a valve follow-up mechanism. Comparative results for a pump with a displaced and a non-displaced swash plate rotation axis are presented, which confirm that displacement of the swash plate rotation axis causes an increase in volumetric efficiency that is apparent for high pressure discharge and small swash plate angles. The determined characteristics were compared with a mathematical model taking into account the compressibility of the fluid in the dead space volume and a satisfactory consistency was obtained.

Suggested Citation

  • Paweł Załuski, 2022. "Influence of Fluid Compressibility and Movements of the Swash Plate Axis of Rotation on the Volumetric Efficiency of Axial Piston Pumps," Energies, MDPI, vol. 15(1), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:298-:d:716451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Casoli & Mirko Pastori & Fabio Scolari & Massimo Rundo, 2019. "Active Pressure Ripple Control in Axial Piston Pumps through High-Frequency Swash Plate Oscillations—A Theoretical Analysis," Energies, MDPI, vol. 12(7), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Casoli & Carlo Maria Vescovini & Massimo Rundo, 2023. "One-Dimensional Fluid Dynamic Modeling of a Gas Bladder Hydraulic Damper for Pump Flow Pulsation," Energies, MDPI, vol. 16(8), pages 1-18, April.
    2. Leandro Danes & Andrea Vacca, 2020. "A Tandem Axial-Piston Unit Based Strategy for the Reduction of Noise Sources in Hydraulic Systems," Energies, MDPI, vol. 13(20), pages 1-20, October.
    3. Alessandro Ferrari & Paola Fresia & Massimo Rundo & Oscar Vento & Pietro Pizzo, 2022. "Experimental Measurement and Numerical Validation of the Flow Ripple in Internal Gear Pumps," Energies, MDPI, vol. 15(24), pages 1-15, December.
    4. Paolo Casoli & Carlo Maria Vescovini & Fabio Scolari & Massimo Rundo, 2022. "Theoretical Analysis of Active Flow Ripple Control in Positive Displacement Pumps," Energies, MDPI, vol. 15(13), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:298-:d:716451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.