IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7106-d926982.html
   My bibliography  Save this article

Transport of Geothermal Fluids along Dikes and Fault Zones

Author

Listed:
  • Agust Gudmundsson

    (Department of Earth Sciences, University of London Royal Holloway, Egham TW20 0NW, UK)

Abstract

Field observations of active and fossil natural geothermal fields indicate that geothermal fluids are primarily transported along dikes and fault zones. Fluid transport along dikes (commonly through fractures at their margins) is controlled by the cubic law where the volumetric flow rate depends on the aperture of the fracture in the 3rd power. Dikes (and inclined sheets) also act as heat sources for geothermal fields. In high-temperature fields in volcanoes in Iceland dikes and inclined sheets constitute 80–100% of the rock at crustal depths of 1.5–2 km. Holocene feeder-dikes are known to have increased the activity of associated geothermal fields. Fault zones transport geothermal fluids along their two main hydromechanical units, the core and the damage zone. The core is comparatively thin and primarily composed of breccia, gouge, and clay and related low-permeability porous materials. By contrast, the fault damage zone is characterised by fractures whose frequency is normally highest at the contact between the core and the damage zone. Fluid transport in the damage zone, and in the core following fault slip, is controlled by the cubic law. During non-slip periods fluid transport in the core is primarily controlled by Darcy’s law. Secondary mineralisation (forming mineral veins and amygdales) tends to reduce the fault-zone permeability. Repeated earthquake activity is thus needed to maintain the permeability of fault zones in active natural geothermal fields.

Suggested Citation

  • Agust Gudmundsson, 2022. "Transport of Geothermal Fluids along Dikes and Fault Zones," Energies, MDPI, vol. 15(19), pages 1-36, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7106-:d:926982
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. R. Faulkner & T. M. Mitchell & D. Healy & M. J. Heap, 2006. "Slip on 'weak' faults by the rotation of regional stress in the fracture damage zone," Nature, Nature, vol. 444(7121), pages 922-925, December.
    2. Haiyang Wang & Binwei Xia & Yiyu Lu & Tao Gong & Rui Zhang, 2017. "Study on the Propagation Laws of Hydrofractures Meeting a Faulted Structure in the Coal Seam," Energies, MDPI, vol. 10(5), pages 1-17, May.
    3. Domenico Liotta & Andrea Brogi & Giovanni Ruggieri & Martina Zucchi, 2021. "Fossil vs. Active Geothermal Systems: A Field and Laboratory Method to Disclose the Relationships between Geothermal Fluid Flow and Geological Structures at Depth," Energies, MDPI, vol. 14(4), pages 1-27, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucjan Sajkowski & Rose Turnbull & Karyne Rogers, 2023. "A Review of Critical Element Concentrations in High Enthalpy Geothermal Fluids in New Zealand," Resources, MDPI, vol. 12(6), pages 1-15, May.
    2. Janani Selvam & Ashok Vajravelu & Sasitharan Nagapan & Bala Kumaran Arumugham, 2023. "Analyzing the Flexural Performance of Cold-Formed Steel Sigma Section Using ABAQUS Software," Sustainability, MDPI, vol. 15(5), pages 1-23, February.
    3. Stefano Mazzoli, 2022. "Geothermal Energy and Structural Geology," Energies, MDPI, vol. 15(21), pages 1-3, October.
    4. Xiaohan Zhang & Yuanfu Zhang & Yuxiu Li & Yunying Huang & Jianlong Zhao & Yuchuan Yi & Junyang Li & Jinchuan Zhang & Dawei Zhang, 2023. "Geothermal Spatial Potential and Distribution Assessment Using a Hierarchical Structure Model Combining GIS, Remote Sensing, and Geophysical Techniques—A Case Study of Dali’s Eryuan Area," Energies, MDPI, vol. 16(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben Treffeisen & Andreas Henk, 2020. "Elastic and Frictional Properties of Fault Zones in Reservoir-Scale Hydro-Mechanical Models—A Sensitivity Study," Energies, MDPI, vol. 13(18), pages 1-28, September.
    2. Marwan Marwan & Muhammad Yanis & Gartika Setiya Nugraha & Muzakir Zainal & Nasrul Arahman & Rinaldi Idroes & Dian Budi Dharma & Deni Saputra & Poernomo Gunawan, 2021. "Mapping of Fault and Hydrothermal System beneath the Seulawah Volcano Inferred from a Magnetotellurics Structure," Energies, MDPI, vol. 14(19), pages 1-22, September.
    3. Lingbin Meng & Jing Zheng & Ruizhao Yang & Suping Peng & Yuan Sun & Jingyu Xie & Dewei Li, 2023. "Microseismic Monitoring Technology Developments and Prospects in CCUS Injection Engineering," Energies, MDPI, vol. 16(7), pages 1-21, March.
    4. Stefano Mazzoli, 2022. "Geothermal Energy and Structural Geology," Energies, MDPI, vol. 15(21), pages 1-3, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7106-:d:926982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.