IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6797-d917360.html
   My bibliography  Save this article

Thermal Estimation and Thermal Design for Coupling Coils of 6.6 kW Wireless Electric Vehicle Charging System

Author

Listed:
  • Jinhai Jiang

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Yu Lan

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Ziming Zhang

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Xingjian Zhou

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Kai Song

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

Abstract

Wireless electric vehicle charging technology is developing in the direction of high power levels. However, more generated heat brought by higher power will accelerate the system’s aging and can even lead to damage. An excellent thermal design for the magnetic coupler can reduce each part’s maximum temperature, ensuring long-term operation reliability. Therefore, in this article, the magnetic coupler’s thermal estimation and design are studied based on a 6.6 kW wireless electric vehicle charging system. First, the calculation method of internal resistance of a litz coil, core loss, and eddy current loss of a shielding aluminum plate are studied. Considering the influence of thermal fields on material properties, each part’s power loss calculation formula is further modified to improve the accuracy. After that, heat dissipation research is carried out. The heat dissipation measures, such as filling the surface of the shielding aluminum plate with thermal conductive silicone grease, are proposed. Finally, the effectiveness of the heat dissipation measures is verified by simulation and experiments. The experiment shows that the error between the power loss value of each part calculated by simulation and measured by the experiment is less than 15%, and the maximum temperature of the magnetic coupler is controlled below 80 °C.

Suggested Citation

  • Jinhai Jiang & Yu Lan & Ziming Zhang & Xingjian Zhou & Kai Song, 2022. "Thermal Estimation and Thermal Design for Coupling Coils of 6.6 kW Wireless Electric Vehicle Charging System," Energies, MDPI, vol. 15(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6797-:d:917360
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6797/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6797/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bragadeshwaran Ashok & Chidambaram Kannan & Byron Mason & Sathiaseelan Denis Ashok & Vairavasundaram Indragandhi & Darsh Patel & Atharva Sanjay Wagh & Arnav Jain & Chellapan Kavitha, 2022. "Towards Safer and Smarter Design for Lithium-Ion-Battery-Powered Electric Vehicles: A Comprehensive Review on Control Strategy Architecture of Battery Management System," Energies, MDPI, vol. 15(12), pages 1-44, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Chmielewski & Piotr Piórkowski & Jakub Możaryn & Stepan Ozana, 2023. "Sustainable Development of Operational Infrastructure for Electric Vehicles: A Case Study for Poland," Energies, MDPI, vol. 16(11), pages 1-43, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6797-:d:917360. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.