IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5729-d882143.html
   My bibliography  Save this article

Solid Rotor Core vs. Lamination Rotor Core in Fractional-Slot PMSM Motor with High Power Density

Author

Listed:
  • Tomasz Wolnik

    (Łukasiewicz Research Network—Institute of Electrical Drives and Machines KOMEL, 40-203 Katowice, Poland)

  • Tomasz Jarek

    (Łukasiewicz Research Network—Institute of Electrical Drives and Machines KOMEL, 40-203 Katowice, Poland)

Abstract

Fractional-slot PMSM motors allow for obtaining high values of power density factors, but at the same time, they are characterized by high values of rotor losses—in the rotor core and permanent magnets. The main causes of rotor losses in this type of motor are subharmonics and a high content of higher harmonics in the distribution of the magnetomotive force MMF . The use of a solid rotor core simplifies the construction and technology of the rotor but eddy current losses in the core account for a significant percentage of the total rotor losses. It is well known that a laminated core reduces eddy currents, while for motors with an outer rotor, it complicates the construction and increases weight. Thus, the question arises about the necessity to use a laminated core in a high power density motor and the real benefits of this. The article presents a comparison of the motors with a solid rotor core and a laminated rotor core, considering the value of rotor losses, power density factor, efficiency and the range of rotational speed and range of current load. The analysis was carried out for various types of sheets for laminated core and solid steel and SMC (Soft Magnetic Composite) material for solid rotor core. FEM models were used in the analysis, and the results were partially verified with the results of laboratory tests of motor models. The object of the analysis is a fractional-slot PMSM motor with an external rotor with surface permanent magnets (SPM). Motor weight is about 10 kg, and the maximum power is 50 kW at 4800 rpm.

Suggested Citation

  • Tomasz Wolnik & Tomasz Jarek, 2022. "Solid Rotor Core vs. Lamination Rotor Core in Fractional-Slot PMSM Motor with High Power Density," Energies, MDPI, vol. 15(15), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5729-:d:882143
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanan Yu & Deliang Liang & Xing Liu, 2017. "Optimal Design of the Rotor Structure of a HSPMSM Based on Analytic Calculation of Eddy Current Losses," Energies, MDPI, vol. 10(4), pages 1-14, April.
    2. Sebastian Berhausen & Tomasz Jarek, 2022. "Analysis of Impact of Design Solutions of an Electric Machine with Permanent Magnets for Bearing Voltages with Inverter Power Supply," Energies, MDPI, vol. 15(12), pages 1-19, June.
    3. Tomasz Wolnik & Vítezslav Styskala & Tomas Mlcak, 2021. "Study on the Selection of the Number of Magnetic Poles and the Slot-Pole Combinations in Fractional Slot PMSM Motor with a High Power Density," Energies, MDPI, vol. 15(1), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emil Król & Marcin Maciążek & Tomasz Wolnik, 2023. "Review of Vibroacoustic Analysis Methods of Electric Vehicles Motors," Energies, MDPI, vol. 16(4), pages 1-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiongjiong Cai & Peng Ke & Xiao Qu & Zihui Wang, 2022. "Research on the Design of Auxiliary Generator for Enthalpy Reduction and Steady Speed Scroll Expander," Energies, MDPI, vol. 15(9), pages 1-17, April.
    2. Sebastian Berhausen & Tomasz Jarek & Petr Orság, 2022. "Influence of the Shielding Winding on the Bearing Voltage in a Permanent Magnet Synchronous Machine," Energies, MDPI, vol. 15(21), pages 1-19, October.
    3. Zeyang Fan & Hong Yi & Jian Xu & Kun Xie & Yue Qi & Sailin Ren & Hongdong Wang, 2021. "Performance Study and Optimization Design of High-Speed Amorphous Alloy Induction Motor," Energies, MDPI, vol. 14(9), pages 1-19, April.
    4. Sebastian Berhausen & Tomasz Jarek, 2022. "Analysis of Impact of Design Solutions of an Electric Machine with Permanent Magnets for Bearing Voltages with Inverter Power Supply," Energies, MDPI, vol. 15(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5729-:d:882143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.