IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5246-d866837.html
   My bibliography  Save this article

A Computational Method of Rotating Stall and Surge Transients in Axial Compressor

Author

Listed:
  • Jiajia Ji

    (Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Jun Hu

    (Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Shuai Ma

    (Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Rong Xu

    (Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

The onset of rotating stall and surge in compressors limits the operating range of aero-engines. Accurately predicting the key features during these events is critical in the engine design process. In this paper, a three-dimensional computational model for transient simulation of multi-stage axial compressors during stall is proposed. The kinetic equations describing the dynamic process of the compression system are constructed, with a 3D through-flow model for the compression part and a 1D gas collector model for the outlet part. The calculation of the source term is performed using the developed body-force model, which realizes the correlation between the deviation angle and the loss coefficient with the inlet parameters in various flow regions. Validated on a single-stage compressor and a single-rotor fan, the results show that the method is capable of capturing the stall and surge features correctly and that the three-dimensional structure of the stall cell can be captured. In addition, this model could be used for the analysis of the surge load, which is significant for the structural integrity of the compressor.

Suggested Citation

  • Jiajia Ji & Jun Hu & Shuai Ma & Rong Xu, 2022. "A Computational Method of Rotating Stall and Surge Transients in Axial Compressor," Energies, MDPI, vol. 15(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5246-:d:866837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5246/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5246/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlo Cravero & Philippe Joe Leutcha & Davide Marsano, 2022. "Simulation and Modeling of Ported Shroud Effects on Radial Compressor Stage Stability Limits," Energies, MDPI, vol. 15(7), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feichao Cai & Guanhong Huang & Xiaowei Liu, 2022. "Investigation of Shock Wave Oscillation Suppression by Overflow in the Supersonic Inlet," Energies, MDPI, vol. 15(11), pages 1-19, May.
    2. Xing Li & Ning Huang & Guanyan Chen & Yanli Zhang & Yang Zhao & Jie Zhang & Ding Tong, 2023. "Numerical Simulation on the Influence of Inlet Flow Characteristics on the Performance of a Centrifugal Compressor," Energies, MDPI, vol. 16(9), pages 1-24, May.
    3. Peng Song & Shengyuan Wang & Jinju Sun, 2022. "Numerical Investigation and Performance Enhancement by Means of Geometric Sensitivity Analysis and Parametric Tuning of a Radial-Outflow High-Pressure Oil–Gas Turbine," Energies, MDPI, vol. 15(22), pages 1-21, November.
    4. Carlo Cravero & Davide Marsano, 2024. "Instability Phenomena in Centrifugal Compressors and Strategies to Extend the Operating Range: A Review," Energies, MDPI, vol. 17(5), pages 1-27, February.
    5. Riyadh Belamadi & Abdelhakim Settar & Khaled Chetehouna & Adrian Ilinca, 2022. "Numerical Modeling of Horizontal Axis Wind Turbine: Aerodynamic Performances Improvement Using an Efficient Passive Flow Control System," Energies, MDPI, vol. 15(13), pages 1-21, July.
    6. Jia-Xuan Liu & Fu-Sheng Yang & Tian-Qing Huo & Jian-Qiang Deng & Zao-Xiao Zhang, 2022. "Analysis of Impact of a Novel Combined Casing Treatment on Flow Characteristics and Performance of a Transonic Compressor," Energies, MDPI, vol. 15(14), pages 1-17, July.
    7. Ziliang Li & Yanhui Wu & Xingen Lu, 2022. "Performance Improvement of a Highly Loaded Transonic Centrifugal Compressor with Tandem Impeller and Freeform Blade Configuration," Energies, MDPI, vol. 15(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5246-:d:866837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.