IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5149-d863867.html
   My bibliography  Save this article

Clay Mineral Type and Content Control Properties of Fine-Grained CO 2 Caprocks—Laboratory Insights from Strongly Swelling and Non-Swelling Clay–Quartz Mixtures

Author

Listed:
  • Mohammad Nooraiepour

    (Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway)

Abstract

Understanding and predicting sealing characteristics and containment efficiency as a function of burial depth across sedimentary basins is a prerequisite for safe and secure subsurface storage. Instead of estimators and empirical relationships, this study aimed to delineate data-driven variability domains for non-cemented fine-grained clastic caprocks. Constant rate-of-strain uniaxial compression experiments were performed to measure changes in properties of brine-saturated quartz–clay mixtures. The binary mixtures were prepared by mixing quartz with strongly swelling (smectite) and non-swelling (kaolinite) clays representing end-member clay mineral characteristics. The primary objective was to evaluate the evolution of mudstone properties in the first 2.5 km of burial depth before chemical compaction and cementation. By conducting systematic laboratory tests, variability domains, normal compaction trends, and the boundaries in which characteristics of fine-grained argillaceous caprocks may vary were identified, quantified, and mathematically described. The results showed distinct domains of properties, where kaolinite-rich samples showed higher compressibility, lower total porosity, higher vertical permeability, and higher Vp and Vs. Two discrepancies were discovered in the literature and resolved regarding the compaction of pure kaolinite and the ultimate lowest porosity for quartz–clay mixtures. The present experimental study can provide inputs for numerical simulation and geological modeling of candidate CO 2 storage sites.

Suggested Citation

  • Mohammad Nooraiepour, 2022. "Clay Mineral Type and Content Control Properties of Fine-Grained CO 2 Caprocks—Laboratory Insights from Strongly Swelling and Non-Swelling Clay–Quartz Mixtures," Energies, MDPI, vol. 15(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5149-:d:863867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5149/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5149-:d:863867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.