IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4692-d848430.html
   My bibliography  Save this article

Electric Field Distribution and Dielectric Losses in XLPE Insulation and Semiconductor Screens of High-Voltage Cables

Author

Listed:
  • Zbigniew Nadolny

    (Division of High Voltage and Electrotechnical Materials, Institute of Electric Power Engineering, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland)

Abstract

This article presents the electric field distribution E and dielectric losses ΔP diel. in the insulation system of high-voltage cables. Such a system consists of inner and outer semiconductor screens and XLPE insulation. The aim of this study was to compare the values of E and ΔP diel. between semiconductor screens and XLPE insulation. The objects of the research were high-voltage cables of 110 kV, 220 kV, 400 kV, and 500 kV. The geometrical dimensions of the cables, especially the radii of individual layers of insulation, as well as the electrical properties of the screens and XLPE, were taken from the literature. Semiconductor screens and XLPE insulation were treated as a system of three concentric cylinders. When determining the electric field distribution, both the electrical permittivity and electrical conductivity, which, in the case of semiconductor screens, play important roles, were taken into account. The obtained results prove that both the electric field distribution E and dielectric losses P diel. are significantly larger in XLPE insulation than in semiconductor screens. The intensity E in XLPE insulation is about four orders of magnitude greater than the intensity in semiconductor screens. Dielectric losses ΔP diel. in XLPE insulation are about eight orders of magnitude greater than the losses occurring in semiconductor screens.

Suggested Citation

  • Zbigniew Nadolny, 2022. "Electric Field Distribution and Dielectric Losses in XLPE Insulation and Semiconductor Screens of High-Voltage Cables," Energies, MDPI, vol. 15(13), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4692-:d:848430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4692/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4692/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guangya Zhu & Kai Zhou & Wei Gong & Min He & Jiaming Kong & Kangle Li, 2019. "Inhibition of Rejuvenation Liquid on Trees in XLPE Cables under Switching Impulse Voltages," Energies, MDPI, vol. 12(11), pages 1-14, June.
    2. Hanen Yahyaoui & Jerome Castellon & Serge Agnel & Aurelien Hascoat & Wilfried Frelin & Christophe Moreau & Pierre Hondaa & Dominique le Roux & Virginie Eriksson & Carl Johan Andersson, 2021. "Behavior of XLPE for HVDC Cables under Thermo-Electrical Stress: Experimental Study and Ageing Kinetics Proposal," Energies, MDPI, vol. 14(21), pages 1-15, November.
    3. Sarath Kumara & Xiangdong Xu & Thomas Hammarström & Yingwei Ouyang & Amir Masoud Pourrahimi & Christian Müller & Yuriy V. Serdyuk, 2020. "Electrical Characterization of a New Crosslinked Copolymer Blend for DC Cable Insulation," Energies, MDPI, vol. 13(6), pages 1-15, March.
    4. Thi Thu Nga Vu & Gilbert Teyssedre & Séverine Le Roy, 2021. "Electric Field Distribution in HVDC Cable Joint in Non-Stationary Conditions," Energies, MDPI, vol. 14(17), pages 1-17, August.
    5. Yifan Zhou & Wei Wang & Tailong Guo, 2020. "Space Charge Accumulation Characteristics in HVDC Cable under Temperature Gradient," Energies, MDPI, vol. 13(21), pages 1-17, October.
    6. Bassel Diban & Giovanni Mazzanti, 2021. "The Effect of Insulation Characteristics on Thermal Instability in HVDC Extruded Cables," Energies, MDPI, vol. 14(3), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songyuan Li & Pengxian Song & Zhanpeng Wei & Xu Li & Qinghua Tang & Zhengzheng Meng & Ji Li & Songtao Liu & Yuhuai Wang & Jin Li, 2022. "Partial Discharge Detection and Defect Location Method in GIS Cable Terminal," Energies, MDPI, vol. 16(1), pages 1-10, December.
    2. Krzysztof Walczak, 2023. "Localization of HV Insulation Defects Using a System of Associated Capacitive Sensors," Energies, MDPI, vol. 16(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae-In Lee & Woo-Hee Jeong & Minh-Chau Dinh & In-Keun Yu & Minwon Park, 2022. "Comparative Analysis of XLPE and Thermoplastic Insulation-Based HVDC Power Cables," Energies, MDPI, vol. 16(1), pages 1-17, December.
    2. Rodolfo Araneo & Salvatore Celozzi & Stefano Lauria & Erika Stracqualursi & Gianfranco Di Lorenzo & Marco Graziani, 2022. "Recent Trends in Power Systems Modeling and Analysis," Energies, MDPI, vol. 15(23), pages 1-7, December.
    3. Fuqiang Tian & Shuting Zhang & Chunyi Hou, 2021. "Effects of Trapping Characteristics on Space Charge and Electric Field Distributions in HVDC Cable under Electrothermal Stress," Energies, MDPI, vol. 14(5), pages 1-22, February.
    4. Yani Wang & Shuai Zhang & Yuanyuan Sun & Xingwu Yang & Chun Liu, 2022. "Effect of Nano-MgO Doping in XLPE on Charge Transport and Electric Field Distribution in Composite Insulation of HVDC Cable Joint," Energies, MDPI, vol. 15(19), pages 1-17, September.
    5. SK Manirul Haque & Jorge Alfredo Ardila-Rey & Yunusa Umar & Abdullahi Abubakar Mas’ud & Firdaus Muhammad-Sukki & Binta Hadi Jume & Habibur Rahman & Nurul Aini Bani, 2021. "Application and Suitability of Polymeric Materials as Insulators in Electrical Equipment," Energies, MDPI, vol. 14(10), pages 1-29, May.
    6. Paweł Mikrut & Paweł Zydroń, 2023. "Numerical Modeling of PD Pulses Formation in a Gaseous Void Located in XLPE Insulation of a Loaded HVDC Cable," Energies, MDPI, vol. 16(17), pages 1-21, September.
    7. Liqiang Wei & Xianhai Pang & Jingang Su & Tao Han & Yufei Yao, 2022. "Improved Locating Method for Local Defects in XLPE Cable Based on Broadband Impedance Spectrum," Energies, MDPI, vol. 15(21), pages 1-14, November.
    8. Sun-Jin Kim & Do-Gyu Lee & Jae-Hyung Kim & Bang-Wook Lee, 2022. "Numerical Analysis of Electric Field Characteristics and Interfacial Pressure of HVDC XLPE Cable Joint Considering Load Cycles," Energies, MDPI, vol. 15(13), pages 1-15, June.
    9. Giovanni Mazzanti, 2021. "Issues and Challenges for HVDC Extruded Cable Systems," Energies, MDPI, vol. 14(15), pages 1-34, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4692-:d:848430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.