IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p258-d715119.html
   My bibliography  Save this article

Weighted Bandwidth Method for Stability Assessment of Complex DC Power Systems on Ships

Author

Listed:
  • Daniele Bosich

    (Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy)

  • Giovanni Giadrossi

    (Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy)

  • Stefano Pastore

    (Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy)

  • Giorgio Sulligoi

    (Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy)

Abstract

In shipboard DC grids, tightly controlled load converters can impair the system stability, thus provoking the ship blackout. Conversely, load converters regulated by low control bandwidths are capable of inducing a stabilizing action. This compensation is verifiable if the loads are few. On the contrary, the balancing of control dynamics is hardly evaluated if the bus feeds multiple (i.e., hundreds or more) DC controlled loads. In this paper, the weighted bandwidth method (WBM) is presented to assess the small-signal stability of a complex shipboard power system by aggregating the multiple converters into two sets of controlled loads. Once the validity of the aggregation is proven, a stability study is performed on the two-loads system. As the last system is more inclined to instability than the initial multiple-loads system, the verification of the two-loads stability criterion guarantees that the shipboard DC grid also remains stable. Finally, emulations on HIL verify the proposed stability assessment thus providing the first unique verification of WBM.

Suggested Citation

  • Daniele Bosich & Giovanni Giadrossi & Stefano Pastore & Giorgio Sulligoi, 2021. "Weighted Bandwidth Method for Stability Assessment of Complex DC Power Systems on Ships," Energies, MDPI, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:258-:d:715119
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/258/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiara Dall’Armi & Davide Pivetta & Rodolfo Taccani, 2023. "Hybrid PEM Fuel Cell Power Plants Fuelled by Hydrogen for Improving Sustainability in Shipping: State of the Art and Review on Active Projects," Energies, MDPI, vol. 16(4), pages 1-34, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:258-:d:715119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.