IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p249-d714601.html
   My bibliography  Save this article

Adaline-Based Control Schemes for Non-Sinusoidal Multiphase Drives—Part II: Torque Optimization for Faulty Mode

Author

Listed:
  • Duc Tan Vu

    (University Lille, Arts et Métiers Institute of Technology, Central Lille, Junia, ULR 2697-L2EP, F-59000 Lille, France
    Faculty of Electrical Engineering, Thai Nguyen University of Technology, No. 666, 3-2 Street, Thai Nguyen 250000, Vietnam)

  • Ngac Ky Nguyen

    (University Lille, Arts et Métiers Institute of Technology, Central Lille, Junia, ULR 2697-L2EP, F-59000 Lille, France)

  • Eric Semail

    (University Lille, Arts et Métiers Institute of Technology, Central Lille, Junia, ULR 2697-L2EP, F-59000 Lille, France)

  • Hailong Wu

    (University Lille, Arts et Métiers Institute of Technology, Central Lille, Junia, ULR 2697-L2EP, F-59000 Lille, France)

Abstract

Fault tolerance has been known as one of the main advantages of multiphase drives. When an open-circuit fault happens, smooth torque can be obtained without any additional hardware. However, a reconfiguration strategy is required to determine new reference currents. Despite advantages of non-sinusoidal electromotive forces (NS-EMFs) such as high torque density, multi-harmonics existing in NS-EMFs cause more challenges for control, especially under faulty conditions. Therefore, to guarantee high-quality vector control of multiphase drives with multi-harmonic NS-EMFs, this two-part study proposes control schemes using adaptive linear neurons (Adalines) to adaptively eliminate torque ripples. The proposed simple Adalines are efficient because of taking advantage of the knowledge of rotor position and of torque harmonic rank induced by the NS-EMFs. The control scheme using an Adaline for healthy mode was described in part I of this study. In this second part, the control scheme using another Adaline for an open-circuit operation, under the impacts of multi-harmonics in NS-EMFs, is proposed. Notably, smooth torque and similar copper losses in the remaining healthy phases can be obtained. Experimental tests are carried out on a seven-phase permanent magnet synchronous machine (PMSM) with a high total harmonic distortion (THD = 38%) of NS-EMFs. A demonstration video is provided with this paper.

Suggested Citation

  • Duc Tan Vu & Ngac Ky Nguyen & Eric Semail & Hailong Wu, 2021. "Adaline-Based Control Schemes for Non-Sinusoidal Multiphase Drives—Part II: Torque Optimization for Faulty Mode," Energies, MDPI, vol. 15(1), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:249-:d:714601
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong-Min You, 2019. "Optimal Design of PMSM Based on Automated Finite Element Analysis and Metamodeling," Energies, MDPI, vol. 12(24), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duc Tan Vu & Ngac Ky Nguyen & Eric Semail & Hailong Wu, 2021. "Adaline-Based Control Schemes for Non-Sinusoidal Multiphase Drives–Part I: Torque Optimization for Healthy Mode," Energies, MDPI, vol. 14(24), pages 1-22, December.
    2. Hanaa Elsherbiny & Laszlo Szamel & Mohamed Kamal Ahmed & Mahmoud A. Elwany, 2022. "High Accuracy Modeling of Permanent Magnet Synchronous Motors Using Finite Element Analysis," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    3. Lukáš Veg & Jan Kaska & Martin Skalický & Roman Pechánek, 2021. "A Complex Study of Stator Tooth-Coil Winding Thermal Models for PM Synchronous Motors Used in Electric Vehicle Applications," Energies, MDPI, vol. 14(9), pages 1-16, April.
    4. Catalin Petrea Ion & Marius Daniel Calin & Ioan Peter, 2023. "Design of a 3 kW PMSM with Super Premium Efficiency," Energies, MDPI, vol. 16(1), pages 1-11, January.
    5. Sunghun Kim & Youngjin Park & Seungbeom Yoo & Sejun Lee & Uttam Kumar Chanda & Wonjun Cho & Ocktaeck Lim, 2023. "Optimization of the Uniformity Index Performance in the Selective Catalytic Reduction System Using a Metamodel," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    6. Sunghun Kim & Youngjin Park & Seungbeom Yoo & Ocktaeck Lim & Bernike Febriana Samosir, 2023. "Development of Machine Learning Algorithms for Application in Major Performance Enhancement in the Selective Catalytic Reduction (SCR) System," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    7. Kan Wang & Zhong Wu & Zhongyi Chu, 2020. "DC-Link Current Control with Inverter Nonlinearity Compensation for Permanent Magnet Synchronous Motor Drives," Energies, MDPI, vol. 13(3), pages 1-16, January.
    8. Armin Dietz & Antonino Oscar Di Tommaso & Fabrizio Marignetti & Rosario Miceli & Claudio Nevoloso, 2020. "Enhanced Flexible Algorithm for the Optimization of Slot Filling Factors in Electrical Machines," Energies, MDPI, vol. 13(5), pages 1-21, February.
    9. Jean-Michel Grenier & Ramón Pérez & Mathieu Picard & Jérôme Cros, 2021. "Magnetic FEA Direct Optimization of High-Power Density, Halbach Array Permanent Magnet Electric Motors," Energies, MDPI, vol. 14(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:249-:d:714601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.