IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p243-d714657.html
   My bibliography  Save this article

Optimization-Based Capacitor Balancing Method with Selective DC Current Ripple Reduction for CHB Converters

Author

Listed:
  • Luis Galván

    (Electronical Engineering Department, University of Seville, 41092 Seville, Spain)

  • Pablo Jesús Gómez

    (Electronical Engineering Department, University of Seville, 41092 Seville, Spain)

  • Eduardo Galván

    (Electronical Engineering Department, University of Seville, 41092 Seville, Spain)

  • Juan Manuel Carrasco

    (Electronical Engineering Department, University of Seville, 41092 Seville, Spain)

Abstract

From its introduction to the present day, Cascaded H-Bridge multilevel converters were employed on numerous applications. However, their floating capacitor, while advantageous for some applications (such as photovoltaic) requires the usage of balancing methods by design. Over the years, several such methods were proposed and polished. Some of these methods use optimization techniques or inject a zero-sequence voltage to take advantage of the converter redundancies. This paper describes an optimization-based capacitor balancing method with additional features. It can drive each module DC-Link to a different voltage for independent maximum power point tracking in photovoltaic applications. Moreover, the user can specify the independent active power set points to modules connected to batteries or any other energy storage systems. Finally, DC current ripple can be reduced on some modules, which can extend the lifespan of any connected ultra-capacitors. The method as a whole is tested on real hardware and compared with the state-of-the-art. In its simplest configuration, the presented method shows greater speed, robustness, and current wave quality than the state-of-the-art alternative in spite of producing about 1/3 fewer commutations. Its other characteristics provide additional functionalities and improve the adaptability of the converter to other applications.

Suggested Citation

  • Luis Galván & Pablo Jesús Gómez & Eduardo Galván & Juan Manuel Carrasco, 2021. "Optimization-Based Capacitor Balancing Method with Selective DC Current Ripple Reduction for CHB Converters," Energies, MDPI, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:243-:d:714657
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/243/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:243-:d:714657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.