IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p236-d714527.html
   My bibliography  Save this article

Innovative Construction of the AFPM-Type Electric Machine and the Method for Estimation of Its Performance Parameters on the Basis of the Induction Voltage Shape

Author

Listed:
  • Andrzej Smoleń

    (Department of Electrical and Computer Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland
    These authors contributed equally to this work.)

  • Lesław Gołębiowski

    (Department of Electrical and Computer Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland
    These authors contributed equally to this work.)

  • Marek Gołębiowski

    (Department of Electrical and Computer Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland
    These authors contributed equally to this work.)

Abstract

The article presents an innovative construction of the Axial Flux Permanent Magnet (AFPM) machine designed for generator performance, which provides the shape of induced voltage that enables estimation of the speed and rotational angle of the machine rotor. Design solutions were proposed, the aim of which is to limit energy losses as a result of the occurrence of eddy currents. The method of direct estimation of the value of the rotational speed and rotational angle of the machine rotor was proposed and investigated on the basis of the measurements of induced voltages and machine phase currents. The advantage of the machine is the utilization of simple and easy-to-use computational procedures. The acquired results were compared with the results obtained for estimation performed by using the Unscented Kalman Filter (UKF).

Suggested Citation

  • Andrzej Smoleń & Lesław Gołębiowski & Marek Gołębiowski, 2021. "Innovative Construction of the AFPM-Type Electric Machine and the Method for Estimation of Its Performance Parameters on the Basis of the Induction Voltage Shape," Energies, MDPI, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:236-:d:714527
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianfei Zhao & Qingjiang Han & Ying Dai & Minqi Hua, 2019. "Study on the Electromagnetic Design and Analysis of Axial Flux Permanent Magnet Synchronous Motors for Electric Vehicles," Energies, MDPI, vol. 12(18), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiongjiong Cai & Peng Ke & Xiao Qu & Zihui Wang, 2022. "Research on the Design of Auxiliary Generator for Enthalpy Reduction and Steady Speed Scroll Expander," Energies, MDPI, vol. 15(9), pages 1-17, April.
    2. Andrzej Smoleń & Lesław Gołębiowski & Marek Gołębiowski & Damian Mazur, 2019. "Computationally Efficient Method of Co-Energy Calculation for Transverse Flux Machine Based on Poisson Equation in 2D," Energies, MDPI, vol. 12(22), pages 1-16, November.
    3. Andrea Credo & Marco Tursini & Marco Villani & Claudia Di Lodovico & Michele Orlando & Federico Frattari, 2021. "Axial Flux PM In-Wheel Motor for Electric Vehicles: 3D Multiphysics Analysis," Energies, MDPI, vol. 14(8), pages 1-18, April.
    4. Tomasz Rudnicki, 2020. "Measurement of the PMSM Current with a Current Transducer with DSP and FPGA," Energies, MDPI, vol. 13(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:236-:d:714527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.