IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2432-d542671.html
   My bibliography  Save this article

Two-Phase Liquid–Liquid Flow in the Aspect of Reduction of Pumping Power of Hydrophobic Substances with High Viscosity

Author

Listed:
  • Jerzy Hapanowicz

    (Department of Process and Environmental Engineering, Faculty of Mechanical Engineering, Opole University of Technology, 5 MikolajczykaStr, 45-271 Opole, Poland)

Abstract

The paper reports the results of a study into a method of estimating the level of power/energy reduction needed for pumping highly viscous hydrophobic liquids. The effect of reducing the flow resistance resulting from feeding an adequate volume of water into the flow tube is considered. The polar parameters of water selected for analysis are different than oil. Experimental studies were not carried out in this regard, since the commonly accessible equation expressing the resistance of two-phase liquid–liquid flow was utilized to develop the method discussed in this study. On its basis, simulations were carried out to determine the conditions and level of reduction of the two-phase flow resistance in comparison to the single-phase flow resistance of a highly viscous oily liquid. The analysis of the results provided means for determination of such ranges of variations in the flow parameters of the two-phase liquid–liquid system, in which the total power of pumps applied to pump both liquids is smaller than the power of one pump feeding oil into the pipeline in the conditions of single-phase flow. Calculations were performed for selected constant mass flux densities of oil with various viscosities as well as for water. The proposed method can be applied in the procedure of optimization calculations for pipeline installations and their feed systems. The given example of its use was preceded by a description of the reasons and effects associated with the reduction of flow resistance in liquid–liquid systems and a detailed presentation of how to use the equation that forms the essence of the described calculation method. Attention was also paid to other phenomena accompanying two-phase liquid–liquid flows, i.e., interfacial slip, phase inversion, specific flow structures, and the viscosity of the unstable mixture of two liquids flowing in the pipe.

Suggested Citation

  • Jerzy Hapanowicz, 2021. "Two-Phase Liquid–Liquid Flow in the Aspect of Reduction of Pumping Power of Hydrophobic Substances with High Viscosity," Energies, MDPI, vol. 14(9), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2432-:d:542671
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2432/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2432-:d:542671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.