IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1667-d519124.html
   My bibliography  Save this article

Performance of Hydraulically Fractured Wells in Xinjiang Oilfield: Experimental and Simulation Investigations on Laumontite-Rich Tight Glutenite Formation

Author

Listed:
  • Shuai Yang

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
    College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China)

  • Yan Jin

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
    College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China)

  • Yunhu Lu

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
    College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China)

  • Yanru Zhang

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China)

  • Beibei Chen

    (Xinjiang Oilfield Corporation, Karamay 834000, China)

Abstract

PetroChina’s Xinjiang oilfield has a large quantity of tight oil reserves and hydraulic fracturing technology has been widely used to achieve commercial production. Some parts of this tight glutenite formation are laumontite-rich and the actual productivity of the hydraulically fractured wells is less than expected. To figure out the ways that laumontite affects tight glutenite well productivity, comprehensive experimental and numerical simulation studies have been conducted to investigate the rock mechanical properties, fluid flow behaviors and the major controlling factor of productivity. Laboratory results indicate that the tight glutenite formation with higher laumontite content has higher initial porosity, permeability but lower yield strength and more severe stress sensitivity in both permeability and fracture conductivity. For laumontite-rich glutenite rocks, there are commonly three types of rock deformation during the loading process: elastic compression, shear dilation and shear enhanced compaction. Both elastic compression and shear enhanced compaction will cause the reduction on rock porosity and permeability. A fully coupled finite element model (FEM) considering stress-induced permeability evolution was introduced to simulate the production process. Permeability evolution models of three different deformation stages were presented, respectively. Simulation results showed that our model is in good agreements with the well testing data. The simulated oil production characteristics for permeability evolution coupled and uncoupled models were discussed. Results showed the strong stress-induced permeability reduction is the major factor that laumontite causing the low and quickly declining oil rates. Initial permeability has a positive effect on productivity and stress-induced fracture conductivity reduction has slight influence on productivity. The results of this paper indicate that the stress-induced permeability evolution in the oil production process must be considered to accurately evaluating reservoirs in the studied area.

Suggested Citation

  • Shuai Yang & Yan Jin & Yunhu Lu & Yanru Zhang & Beibei Chen, 2021. "Performance of Hydraulically Fractured Wells in Xinjiang Oilfield: Experimental and Simulation Investigations on Laumontite-Rich Tight Glutenite Formation," Energies, MDPI, vol. 14(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1667-:d:519124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lijia Li & Xiaosen Li & Yi Wang & Chaozhong Qin & Bo Li & Yongjiang Luo & Jingchun Feng, 2021. "Investigating the Interaction Effects between Reservoir Deformation and Hydrate Dissociation in Hydrate-Bearing Sediment by Depressurization Method," Energies, MDPI, vol. 14(3), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitrii Antonov & Olga Gaidukova & Galina Nyashina & Dmitrii Razumov & Pavel Strizhak, 2022. "Prospects of Using Gas Hydrates in Power Plants," Energies, MDPI, vol. 15(12), pages 1-20, June.
    2. Igor Donskoy, 2023. "Particle Agglomeration of Biomass and Plastic Waste during Their Thermochemical Fixed-Bed Conversion," Energies, MDPI, vol. 16(12), pages 1-25, June.
    3. Olga Gaidukova & Sergey Misyura & Igor Donskoy & Vladimir Morozov & Roman Volkov, 2022. "Pool Fire Suppression Using CO 2 Hydrate," Energies, MDPI, vol. 15(24), pages 1-23, December.
    4. Qingping Li & Shuxia Li & Shuyue Ding & Zhenyuan Yin & Lu Liu & Shuaijun Li, 2022. "Numerical Simulation of Gas Production and Reservoir Stability during CO 2 Exchange in Natural Gas Hydrate Reservoir," Energies, MDPI, vol. 15(23), pages 1-17, November.
    5. Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1667-:d:519124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.