IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1652-d518186.html
   My bibliography  Save this article

Discharge Behavior and Morphological Characteristics of Suspended Water-Drop on Shed Edge during Rain Flashover of Polluted Large-Diameter Post Insulator

Author

Listed:
  • Yifan Liao

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China)

  • Qiao Wang

    (School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China)

  • Lin Yang

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China)

  • Zhiqiang Kuang

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China)

  • Yanpeng Hao

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China)

  • Chuyan Zhang

    (School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China)

Abstract

Rain is one of the dominant meteorological factors threatening the outdoor insulation performance of ultra-high voltage (UHV) power stations. Discharge occurring on the polluted surface of post insulators in rain has always been a major concern of power stations. Previous studies have shown that suspended water droplets on the shed edge play an important role in the rain flashover process. In this work, artificial contamination rain flashover tests were carried out in a laboratory on a UHV DC (Ultra-High Voltage Direct Current) large-diameter composite post insulator, which had a rod diameter of 625 mm and alternating sheds (105 mm and 75 mm for larger and smaller shed overhang, respectively). The discharge mechanism was analyzed base on the observation of discharge phenomenon of suspended water-drops on the shed edge. Moreover, simulation models by COMSOL Multiphysics were established to investigate the electric field around sheds and suspended water-drops, as well as the shape change of water droplets on the insulation surface, especially at the edge of the shed. Results show that the shape parameters of water-droplets changed continuously under the combined action of gravity, surface tension, and capillary tension. Suspended water-droplets on the shed edge showed a great influence on the electric field distribution, and the resulting discharge lead to the bridging between sheds. This work paves a new way to revealing the contamination rain flashover mechanism on post insulators and provides critical knowledge for power stations on preventing flashover accidents.

Suggested Citation

  • Yifan Liao & Qiao Wang & Lin Yang & Zhiqiang Kuang & Yanpeng Hao & Chuyan Zhang, 2021. "Discharge Behavior and Morphological Characteristics of Suspended Water-Drop on Shed Edge during Rain Flashover of Polluted Large-Diameter Post Insulator," Energies, MDPI, vol. 14(6), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1652-:d:518186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1652/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1652/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Majid Hussain & Muhammad Akmal Chaudhary & Abdul Razaq, 2019. "Mechanism of Saline Deposition and Surface Flashover on High-Voltage Insulators near Shoreline: Mathematical Models and Experimental Validations," Energies, MDPI, vol. 12(19), pages 1-20, September.
    2. Yanpeng Hao & Yifan Liao & Zhiqiang Kuang & Yijie Sun & Gaofeng Shang & Weixun Zhang & Guiyun Mao & Lin Yang & Fuzeng Zhang & Licheng Li, 2020. "Experimental Investigation on Influence of Shed Parameters on Surface Rainwater Characteristics of Large-Diameter Composite Post Insulators under Rain Conditions," Energies, MDPI, vol. 13(19), pages 1-16, September.
    3. Jiazheng Lu & Pengkang Xie & Jianping Hu & Zhenglong Jiang & Zhen Fang, 2018. "AC Flashover Performance of 10 kV Rod-Plane Air-Gapped Arresters under Rain Conditions," Energies, MDPI, vol. 11(6), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Yang & Haotian Zhang & Wen Cao & Xuanxiang Zhao & Ran Wen & Junping Zhao & Shengwu Tan & Pengchao Wang, 2021. "Optical Diagnostic Characterization of the Local Arc on Contaminated Insulation Surface at Low Pressure," Energies, MDPI, vol. 14(19), pages 1-11, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiahong He & Kang He & Bingtuan Gao, 2019. "Modeling of Dry Band Formation and Arcing Processes on the Polluted Composite Insulator Surface," Energies, MDPI, vol. 12(20), pages 1-20, October.
    2. Zhen Fang & Bowen Wang & Jiazheng Lu & Zhenglong Jiang, 2018. "Study on Impulse Breakdown Characteristics of Internal-Gap Lightning Protection Device Applied to 35 kV Distribution Line," Energies, MDPI, vol. 11(7), pages 1-13, July.
    3. Dongdong Zhang & Hong Xu & Jin Liu & Chengshun Yang & Xiaoning Huang & Zhijin Zhang & Xingliang Jiang, 2021. "Research on the Non-Contact Pollution Monitoring Method of Composite Insulator Based on Space Electric Field," Energies, MDPI, vol. 14(8), pages 1-15, April.
    4. Yanpeng Hao & Yifan Liao & Zhiqiang Kuang & Yijie Sun & Gaofeng Shang & Weixun Zhang & Guiyun Mao & Lin Yang & Fuzeng Zhang & Licheng Li, 2020. "Experimental Investigation on Influence of Shed Parameters on Surface Rainwater Characteristics of Large-Diameter Composite Post Insulators under Rain Conditions," Energies, MDPI, vol. 13(19), pages 1-16, September.
    5. Issouf Fofana & Janvier Sylvestre N’cho & Amidou Betie & Epiphane Hounton & Fethi Meghnefi & Kouba Marie Lucia Yapi, 2020. "Lessons to Learn from Post-Installation Pollution Levels Assessment of Some Distribution Insulators," Energies, MDPI, vol. 13(16), pages 1-11, August.
    6. Zhenan Zhou & Haowei Li & Silun Wen & Chuyan Zhang, 2023. "Prediction Model for the DC Flashover Voltage of a Composite Insulator Based on a BP Neural Network," Energies, MDPI, vol. 16(2), pages 1-9, January.
    7. Haitao Yang & Zhensheng Wu & Weinan Dong & Junpeng Dang & Hao Ren, 2021. "Analysis of the Influence of Silicone Rubber Aging on the Transmission Parameters of Terahertz Waves," Energies, MDPI, vol. 14(14), pages 1-17, July.
    8. Arshad & Jawad Ahmad & Ahsen Tahir & Brian G. Stewart & Azam Nekahi, 2020. "Forecasting Flashover Parameters of Polymeric Insulators under Contaminated Conditions Using the Machine Learning Technique," Energies, MDPI, vol. 13(15), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1652-:d:518186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.